
Digi XBee® 3 802.15.4
Radio Frequency (RF) Module

User Guide

Revision history—90002273

Revision Date Description

D August
2019

Added%P and DM. Updated RR. Updates to Remote AT Command Request
frame. Added location and BLE commands. Added statuses to the 0x8A
frame. Added frames Ox2C, 0x2D, 0xAC, and 0xAD. Added Get started with
BLE and BLE reference sections. Made changes to the CCA operations
section.

E September
2019

Added *S, *V, *W, *X, *Y, SA, AZ, and FS INFO FULL. Added reserved
endpoints to 0x11 frame.

F April 2020 Added BP, R?, US. Updated OTA firmware/file system upgrades.

G May 2020 Revised all API frame descriptions.

H August
2020

Added a note to D8. UpdatedOTA firmware/file system upgrades.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2020 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name andmodel
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)

Digi XBee® 3 802.15.4 RF Module User Guide 2

http://www.digi.com/howtobuy/terms

 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce
Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi XBee® 3 802.15.4 RF Module User Guide, 90002273
H) in the subject line of your email.

Digi XBee® 3 802.15.4 RF Module User Guide 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Digi XBee® 3 802.15.4 RF Module User Guide
Applicable firmware and hardware 16
Change the firmware protocol 16
Regulatory information 16

Get started
Verify kit contents 18
Assemble the hardware 18

Plug in the XBee 3 802.15.4 RF Module 19
Unplug an XBee 3 802.15.4 RF Module 20

Configure the device using XCTU 20
Configure remote devices 20
Configure the devices for a range test 22
Perform a range test 22
XBIB-C Micro Mount reference 27
XBIB-C SMT reference 30
XBIB-CU TH reference 32
XBIB-C-GPS reference 34
Interface with the XBIB-C-GPS module 36

I2C communication 37
UART communication 37
Run the MicroPython GPS demo 37

Get started with MicroPython
About MicroPython 40
MicroPython on the XBee 3 802.15.4 RF Module 40
Use XCTU to enter the MicroPython environment 40
Use the MicroPython Terminal in XCTU 41
MicroPython examples 41

Example: hello world 41
Example: enter MicroPython paste mode 41
Example: use the time module 42
Example: AT commands using MicroPython 42
MicroPython networking and communication examples 43

Exit MicroPython mode 49
Other terminal programs 50

Tera Term for Windows 50
Use picocom in Linux 51

Digi XBee® 3 802.15.4 RF Module User Guide 4

Digi XBee® 3 802.15.4 RF Module User Guide 5

Micropython help () 52

Secure access
Secure Sessions 55

Configure the secure session password for a device 55
Start a secure session 55
End a secure session 56

Secured remote AT commands 56
Secure a node against unauthorized remote configuration 56
Remotely configure a node that has been secured 57

Send data to a secured remote node 58
End a session from a server 58
Secure Session API frames 59
Secure transmission failures 60

Data Frames - 0x10 and 0x11 frames 60
Remote AT Commands- 0x17 frames 60

File system
Overview of the file system 62
Directory structure 62
Paths 62
Limitations 62
XCTU interface 63

Get started with BLE
Enable BLE on the XBee 3 802.15.4 RF Module 65
Enable BLE and configure the BLE password 65
Get the Digi XBee Mobile phone application 66
Connect with BLE and configure your XBee 3 device 67

BLE reference
BLE advertising behavior and services 69
Device Information Service 69
XBee API BLE Service 69
API Request characteristic 69
API Response characteristic 70

Configure the XBee 3 802.15.4 RF Module
Software libraries 72
Firmware over-the-air (FOTA) update 72
Custom defaults 72

Set custom defaults 72
Restore factory defaults 72
Limitations 72

Custom configuration: Create a new factory default 73
Set a custom configuration 73
Clear all custom configuration on a device 73

Digi XBee® 3 802.15.4 RF Module User Guide 6

XBee bootloader 73
Send a firmware image 74
XBee Network Assistant 74
XBee Multi Programmer 75

Modes
Transparent operating mode 77

Serial-to-RF packetization 77
API operating mode 77
Commandmode 77

Enter Commandmode 78
Troubleshooting 78
Send AT commands 78
Response to AT commands 79
Apply command changes 79
Make command changes permanent 79
Exit Commandmode 79

Idle mode 80
Transmit mode 80
Receive mode 80

Serial communication
Serial interface 82
Serial receive buffer 82
Serial transmit buffer 82
UART data flow 82

Serial data 83
Flow control 83

Clear-to-send (CTS) flow control 83
RTS flow control 84

SPI operation
SPI communications 86
Full duplex operation 87
Low power operation 87
Select the SPI port 88
Force UART operation 89

I/O support
Legacy support 91
Mixed network considerations 92
Digital I/O support 92
Analog I/O support 93
Monitor I/O lines 94
I/O sample data format 94

Legacy data format 94
Enhanced data format 96

API frame support 96
On-demand sampling 97

Digi XBee® 3 802.15.4 RF Module User Guide 7

Example: Commandmode 97
Example: Local AT command in API mode 98
Example: Remote AT command in API mode 99

Periodic I/O sampling 100
Source 100
Destination 100
Multiple samples per packet 100
Example: Remote AT command in API mode 101

Digital I/O change detection 102
I/O line passing 103
Digital line passing 103

Example: Digital line passing 103
Analog line passing 104
Example: Analog line passing 104

Output sample data 105
Output control 105
I/O behavior during sleep 105

Digital I/O lines 105
Analog and PWM I/O Lines 105

Networking
Networking terms 107
MAC Mode configuration 107
Clear Channel Assessment (CCA) 108

CCA operations 108
Retries configuration 108
Transmit status based on MAC mode and XBee retries configurations 109
Addressing 110

Send packets to a specific device in Transparent API mode 110
Addressing modes 110

Peer-to-peer networks 111
Master/slave networks 111

End device association 111
Coordinator association 112
Association indicators 113
Modem status messages 113
Association indicator status codes 114

Direct and indirect transmission 114
Configure an indirect messaging coordinator 115
Send indirect messages 115
Receive indirect messages 115

Encryption 116
Maximum payload 117

Maximum payload rules 117
Maximum payload summary tables 118
Work with Legacy devices 119

Network commissioning and diagnostics
Remote configuration commands 121

Send a remote command 121
Apply changes on remote devices 121
Remote command responses 121

Digi XBee® 3 802.15.4 RF Module User Guide 8

Node discovery 121
About node discovery 122
Node discovery in compatibility mode 122
Directed node discovery 122
Directed node discovery in compatibility mode 123
Destination Node 123

Sleep support
Sleepmodes 125

Pin Sleepmode (SM = 1) 125
Cyclic Sleepmode (SM = 4) 125
Cyclic Sleep with Pin Wake-upmode (SM = 5) 126
MicroPython sleep with optional pin wake (SM = 6) 126

Sleep parameters 126
Sleep pins 126
Sleep conditions 127

AT commands
Networking commands 129

CH (Operating Channel) 129
ID (Extended PAN ID) 129
MM (MAC Mode) 129
C8 (Compatibility Options) 130

Discovery commands 132
NI (Node Identifier) 132
DD (Device Type Identifier) 132
NT (Node Discover Timeout) 132
NO (Network Discovery Options) 132
ND (Network Discover) 133
DN (Discover Node) 134
AS (Active Scan) 134

Coordinator/End Device configuration commands 136
CE (Device Role) 136
A1 (End Device Association) 136
A2 (Coordinator Association) 137
SC (Scan Channels) 138
SD (Scan Duration) 139
DA (Force Disassociation) 139
AI (Association Indication) 139

802.15.4 Addressing commands 140
SH (Serial Number High) 140
SL (Serial Number Low) 140
MY (16-bit Source Address) 141
DH (Destination Address High) 141
DL (Destination Address Low) 141
RR (XBee Retries) 142
TO (Transmit Options) 142
NP (Maximum Packet Payload Bytes) 142

Security commands 143
EE (Encryption Enable) 143
KY (AES Encryption Key) 143
DM (Disable Features) 144

Digi XBee® 3 802.15.4 RF Module User Guide 9

US (OTA Upgrade Server) 144
Secure Session commands 145

SA (Secure Access) 145
*S (Secure Session Salt) 145
*V, *W, *X, *Y (Secure Session Verifier) 146

RF interfacing commands 146
PL (TX Power Level) 146
PP (Output Power in dBm) 147
CA (CCA Threshold) 147
RN (Random Delay Slots) 147

MAC diagnostics commands 148
DB (Last Packet RSSI) 148
EA (ACK Failures) 148
EC (CCA Failures) 148
ED (Energy Detect) 149

Sleep settings commands 149
SM (Sleep Mode) 149
SP (Cyclic Sleep Period) 149
ST (Cyclic Sleep Wake Time) 150
DP (Disassociated Cyclic Sleep Period) 150
SN (Number of Sleep Periods) 150
SO (Sleep Options) 151
FP (Force Poll) 151

MicroPython commands 152
PS (Python Startup) 152
PY (MicroPython Command) 152

File System commands 153
FS (File System) 153
FK (File System Public Key) 155

Bluetooth Low Energy (BLE) commands 155
BT (Bluetooth Enable) 155
BL (Bluetooth MAC Address) 156
BI (Bluetooth Identifier) 156
BP (Bluetooth Power) 156
$S (SRP Salt) 157
$V, $W, $X, $Y commands (SRP Salt verifier) 157

API configuration commmands 157
AP (API Enable) 157
AO (API Output Options) 158
AZ (Extended API Options) 158

UART interface commands 159
BD (UART Baud Rate) 159
NB (Parity) 160
SB (Stop Bits) 160
FT (Flow Control Threshold) 160
RO (Packetization Timeout) 161

AT Command options 161
CC (Command Character) 161
CT (Command Mode Timeout) 161
GT (Guard Times) 162
CN (Exit Commandmode) 162

UART pin configuration commands 162
D6 (DIO6/RTS Configuration) 162
D7 (DIO7/CTS Configuration) 163
P3 (DIO13/UART_DOUT Configuration) 163

Digi XBee® 3 802.15.4 RF Module User Guide 10

P4 (DIO14/UART_DIN Configuration) 164
SMT/MMT SPI interface commands 164

P5 (DIO15/SPI_MISO Configuration) 164
P6 (DIO16/SPI_MOSI Configuration) 165
P7 (DIO17/SPI_SSEL Configuration) 165
P8 (DIO18/SPI_CLK Configuration) 166
P9 (DIO19/SPI_ATTN Configuration) 166

I/O settings commands 167
D0 (DIO0/ADC0/Commissioning Configuration) 167
CB (Commissioning Button) 167
D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) 168
D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 168
D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) 169
D4 (DIO4/TH_SPI_MOSI Configuration) 169
D5 (DIO5/Associate Configuration) 170
D8 (DIO8/DTR/SLP_Request Configuration) 170
D9 (DIO9/ON_SLEEP Configuration) 171
P0 (DIO10/RSSI/PWM0 Configuration) 171
P1 (DIO11/PWM1 Configuration) 172
P2 (DIO12/TH_SPI_MISO Configuration) 172
PR (Pull-up/Down Resistor Enable) 173
PD (Pull Up/Down Direction) 174
M0 (PWM0 Duty Cycle) 174
M1 (PWM1 Duty Cycle) 175
RP (RSSI PWM Timer) 175
LT (Associate LED Blink Time) 175

I/O sampling commands 176
IS (I/O Sample) 176
IR (Sample Rate) 177
IC (DIO Change Detect) 177
AV (Analog Voltage Reference) 178
IT (Samples before TX) 178
IF (Sleep Sample Rate) 179
IO (Digital Output Level) 179

I/O line passing commands 179
IA (I/O Input Address) 179
IU (I/O Output Enable) 180
T0 (D0 Timeout Timer) 180
T1 (D1 Output Timeout Timer) 180
T2 (D2 Output Timeout Timer) 181
T3 (D3 Output Timeout Timer) 181
T4 (D4 Output Timeout Timer) 181
T5 (D5 Output Timeout Timer) 181
T6 (D6 Output Timeout Timer) 181
T7 (D7 Output Timeout Timer) 182
T8 (D8 Output Timer) 182
T9 (D9 Output Timer) 182
Q0 (P0 Output Timer) 182
Q1 (P1 Output Timer) 182
Q2 (P2 Output Timer) 183
PT (PWM Output Timeout) 183

Location commands 183
LX (Location X—Latitude) 183
LY (Location Y—Longitude) 183
LZ (Location Z—Elevation) 184

Digi XBee® 3 802.15.4 RF Module User Guide 11

Diagnostic commands - firmware/hardware information 184
VR (Firmware Version) 184
VL (Version Long) 184
VH (Bootloader Version) 184
HV (Hardware Version) 185
R? (Power Variant) 185
%C (Hardware/Software Compatibility) 185
%V (Supply Voltage) 185
TP (Module Temperature) 186
CK (Configuration CRC) 186
%P (Invoke Bootloader) 186

Memory access commands 186
FR (Software Reset) 186
AC (Apply Changes) 187
WR (Write) 187
RE (Restore Defaults) 187

Custom Default commands 188
%F (Set Custom Default) 188
!C (Clear Custom Defaults) 188
R1 (Restore Factory Defaults) 188

Operate in API mode
API mode overview 190
Use the AP command to set the operation mode 190
API frame format 190

API operation (AP parameter = 1) 190
API operation with escaped characters (AP parameter = 2) 191

Frame descriptions
64-bit Transmit Request - 0x00 195

Description 195
Format 195
Examples 196

16-bit Transmit Request - 0x01 197
Description 197
Format 197
Examples 198

Local AT Command Request - 0x08 199
Description 199
Format 199
Examples 199

Queue Local AT Command Request - 0x09 201
Description 201
Format 201
Examples 201

Transmit Request - 0x10 202
Description 202
Transmit options bit field 203
Examples 204

Explicit Addressing Command Request - 0x11 205
Description 205
64-bit addressing 205

Digi XBee® 3 802.15.4 RF Module User Guide 12

16-bit addressing 206
Reserved endpoints 206
Reserved cluster IDs 206
Reserved profile IDs 206
Transmit options bit field 207
Examples 208

Remote AT Command Request - 0x17 211
Description 211
Format 211
Examples 212

BLE Unlock Request - 0x2C 213
Description 213
Format 214
Phase tables 215
Examples 216

User Data Relay Input - 0x2D 216
Description 216
Use cases 217
Format 217
Error cases 217
Examples 218

Secure Session Control - 0x2E 218
Description 218
Format 218
Examples 220

Description 222
Format 222
Examples 223

64-bit unicast 223
16-bit Receive Packet - 0x81 224

Description 224
Format 224
Examples 225

64-bit I/O Sample Indicator - 0x82 226
Description 226
Format 226

16-bit I/O Sample Indicator - 0x83 228
Description 228
Format 228

Description 230
Format 230
Examples 231

Set local command parameter 231
Query local command parameter 231

Transmit Status - 0x89 232
Description 232
Format 232
Delivery status codes 233
Examples 234

Modem Status - 0x8A 236
Description 236
Format 236

Modem status codes 237
Examples 238

Extended Transmit Status - 0x8B 239

Digi XBee® 3 802.15.4 RF Module User Guide 13

Description 239
Format 239
Delivery status codes 240
Examples 241

Receive Packet - 0x90 242
Description 242
Format 242
Examples 243

Explicit Receive Indicator - 0x91 244
Description 244
Format 244
Examples 245

I/O Sample Indicator - 0x92 247
Description 247
Format 247
Examples 248

Remote AT Command Response- 0x97 250
Description 250
Format 250
Examples 251

Extended Modem Status - 0x98 252
Description 252
Format 252
Secure Session status codes 252
Examples 253

BLE Unlock Response - 0xAC 255
Description 255

Description 255
Format 255
Error cases 256
Examples 256

Relay from Bluetooth (BLE) 256
Secure Session Response - 0xAE 257

Description 257
Format 257
Examples 258

OTA firmware/file system upgrades
Overview 260

Firmware over-the-air upgrades 260
File system over-the-air upgrades 260

Scheduled upgrades 260
Create an OTA upgrade server 261

ZCL firmware upgrade cluster specification 261
Differences from the ZCL specification 261
OTA files 261
OTA upgrade process 263
OTA commands 264
Schedule an upgrade 280
Scheduled upgrades on sleeping devices 280
Considerations for older firmware versions 281
Does the download include the OTA header? 282

Digi XBee® 3 802.15.4 RF Module User Guide 14

OTA file system upgrades
OTA file system update process 284
OTA file system updates using XCTU 284

Generate a public/private key pair 284
Set the public key on the XBee 3 device 285
Create the OTA file system image 286
Perform the OTA file system update 287

OTA file system updates: OEM 288
Generate a public/private key pair 289
Set the public key on the XBee 3 device 289
Create the OTA file system image 289
Perform the OTA file system update 290

Digi XBee® 3 802.15.4 RF Module User Guide

XBee 3 802.15.4 RF Modules are embedded solutions providing wireless end-point connectivity to
devices. These devices use the IEEE 802.15.4 networking protocol for fast point-to-multipoint or peer-
to-peer networking. They are designed for high-throughput applications requiring low latency and
predictable communication timing.
The XBee 3 802.15.4 RF Module supports the needs of low-cost, low-power wireless sensor networks.
The devices require minimal power and provide reliable delivery of data between devices. The devices
operate within the ISM 2.4 GHz frequency band.
The XBee 3 802.15.4 RF Module uses XBee 3 hardware and the Silicon Labs EFR32 chipset. As the
name suggests, the 802.15.4 module is over-the-air compatible with our Legacy 802.15.4 modules (S1
and S2C hardware).
For information about XBee 3 hardware, see the XBee 3 RF Module Hardware Reference Manual.

Applicable firmware and hardware 16
Change the firmware protocol 16
Regulatory information 16

Digi XBee® 3 802.15.4 RF Module User Guide 15

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Digi XBee® 3 802.15.4 RF Module User Guide Applicable firmware and hardware

Digi XBee® 3 802.15.4 RF Module User Guide 16

Applicable firmware and hardware
This manual supports the following firmware:

n v.20xx Digi 802.15.4

It supports the following hardware:

n XBee 3

Change the firmware protocol
You can switch the firmware loaded onto the XBee 3 hardware to run any of the following protocols:

n Zigbee
n 802.15.4
n DigiMesh

To change protocols, use the Update firmware feature in XCTU and select the firmware. See the
XCTU User Guide.

Regulatory information
See the Regulatory information section of the XBee 3 RF Module Hardware Reference Manual for the
XBee 3 hardware's regulatory and certification information.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
https://www.digi.com/resources/documentation/Digidocs/90001543/#containers/cont_certs.htm%3FTocPath%3DRegulatory%2520information|_____0
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Get started

This section covers the following tasks and features:

Verify kit contents 18
Assemble the hardware 18
Configure the device using XCTU 20
Configure remote devices 20
Configure the devices for a range test 22
Perform a range test 22
XBIB-C Micro Mount reference 27
XBIB-C SMT reference 30
XBIB-CU TH reference 32
XBIB-C-GPS reference 34
Interface with the XBIB-C-GPS module 36

Digi XBee® 3 802.15.4 RF Module User Guide 17

Get started Verify kit contents

Digi XBee® 3 802.15.4 RF Module User Guide 18

Verify kit contents
The XBee 3 802.15.4 RF Module development kit contains the following components:

Part

XBee 3 Zigbee SMT module (3)

XBee Grove development board (3)

Micro USB cable (3)

Antenna - 2.4 GHz, half-wave dipole, 2.1 dBi, U.FL female, articulating
(3)

XBee stickers

Assemble the hardware
This guide walks you through the steps required to assemble and disassemble the hardware
components of your kit.

n Plug in the XBee 3 802.15.4 RF Module
n Unplug an XBee 3 802.15.4 RF Module

https://www.digi.com/resources/documentation/Digidocs/90001457-13/

Get started Assemble the hardware

Digi XBee® 3 802.15.4 RF Module User Guide 19

The kit includes several XBee Grove Development Boards. For more information about this hardware,
see the XBee Grove Development Board documentation.

Plug in the XBee 3 802.15.4 RF Module
This kit includes two XBee Grove Development Boards. For more information about this hardware,
visit the XBee Grove Development Board documentation.
Follow these steps to connect the XBee devices to the boards included in the kit:

1. Plug one XBee 3 802.15.4 RF Module into each XBee Grove Development Board. When you
connect the development board to a PC for the first time, the PC automatically installs drivers,
which may take a few minutes to complete.

CAUTION! Never insert or remove the XBee while the power is on (either from the
micro USB or a battery)!

For XBee SMT devices, align all XBee pins with the spring header and carefully push the device
until it clicks firmly into the board.

https://www.digi.com/resources/documentation/Digidocs/90001457-13/
https://www.digi.com/resources/documentation/Digidocs/90001457-13/

Get started Configure the device using XCTU

Digi XBee® 3 802.15.4 RF Module User Guide 20

2. Once theXBee 3 802.15.4 RF Module is plugged into the board, connect the board to your
computer using the micro USB cables provided.

3. Ensure the loopback jumper is in the UART position.

Unplug an XBee 3 802.15.4 RF Module
To disconnect a device from the XBee Grove Development Board:

1. Disconnect the micro USB cable from the board so it is not powered.
2. Remove the device from the board socket, taking care not to bend any of the pins. The surface

mount device uses spring pins rather than a socket and has a rectangular board cutout
designed to help in removing the XBee 3 802.15.4 RF Module.

CAUTION! Make sure the board is not powered when you remove the XBee 3 802.15.4 RF
Module.

Configure the device using XCTU
XBee Configuration and Test Utility (XCTU) is a multi-platform program that enables users to interact
with Digi radio frequency (RF) devices through a graphical interface. The application includes built-in
tools that make it easy to set up, configure, and test Digi RF devices.
For instructions on downloading and using XCTU, see the XCTU User Guide.

Configure remote devices
You can communicate with remote devices over the air through a corresponding local device.

Note Using API mode on the local device allows you to send remote API commands.

These instructions show you how to configure the LT (Associate LED Blink Time) parameter on a
remote device.

1. Add two XBee devices to XCTU.
2. Load XBee 3 802.15.4 firmware onto each device if it is not already loaded. See How to update

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Get started Configure remote devices

Digi XBee® 3 802.15.4 RF Module User Guide 21

the firmware of your modules in the XCTU User Guide for more information.
3. Configure the first device in API mode and name it XBEE_A by configuring the following

parameters:

n ID: 2018
n NI: XBEE_A
n AP: API enabled [1]

4. Configure the second device in either API or Transparent mode, and name it XBEE_B by
configuring the following parameters:

n ID: 2018
n NI: XBEE_B
n AP: 0 or 1

4. Disconnect XBEE_B from your computer and remove it from XCTU.
5. Connect XBEE_B to a power supply (or laptop or portable battery).

The Radio Modules area should look something like this.

6. Select XBEE_A and click the Discover radio nodes in the same network button .
7. Click Add selected devices in the Discovering remote devices dialog. The discovered remote

device appears below XBEE_A.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Get started Configure the devices for a range test

Digi XBee® 3 802.15.4 RF Module User Guide 22

8. Select the remote device XBEE_B, and configure the following parameter:
LT: FF (hexadecimal representation for 2550 ms)

9. Click the Write radio settings button .
The remote XBee device now has a different LED blink time.

10. To return to the default LED blink times, change the LT parameter back to 0 for XBEE_B.

Configure the devices for a range test
1. Add two devices to XCTU.
2. Select the first module and click the Load default firmware settings button.
3. Configure the following parameters:

ID: 2018
NI: LOCAL_DEVICE
AP: API Mode Enabled [1]

4. Click the Write radio settings button.
5. Select the other module and click the Default firmware settings button.
6. Configure the following parameters:

ID: 2018
NI: REMOTE_DEVICE
AP: Transparent mode [0] (The remote node must be in transparent mode to loop back
packets)

7. Click the Write radio settings button.
After you write the radio settings for each device, their names appear in the Radio Modules
area. The Port indicates that the LOCAL_DEVICE is in API mode.

8. Disconnect REMOTE_DEVICE from the computer, remove it from XCTU, and connect it to a
power supply, laptop, or portable battery.

9. Leave LOCAL_DEVICE connected to the computer.

Perform a range test
1. Go to the XCTU display for radio 1.

2. Click to discover remote devices within the same network. The Discover remote devices
dialog appears.

Get started Perform a range test

Digi XBee® 3 802.15.4 RF Module User Guide 23

3. Click Add selected devices.

Get started Perform a range test

Digi XBee® 3 802.15.4 RF Module User Guide 24

4. Click and select Range test. The Radio Range Test dialog appears.

5. Change the Range Test type to Loopback.
6. In the Select the local radio device area, select radio 1. XCTU automatically selects the

Discovered device option, and the Start Range Test button is active.

7. Click to begin the range test. XCTU prompts you to enable the loopback
jumper.

Get started Perform a range test

Digi XBee® 3 802.15.4 RF Module User Guide 25

Plug in the XBee 3 802.15.4 RF Module has pictures that show the jumper in the UART
position—move the jumper to the left on the surface-mount device or down on the through-
hole device puts it in loopback mode
If the test is running properly, the packets sent should match the packets received. You will
also see the received signal strength indicator (RSSI) update for each radio after each
reception.

Get started Perform a range test

Digi XBee® 3 802.15.4 RF Module User Guide 26

8. Move Radio 1 around to see the resulting signal strength at different distances. You can also
test different data rates by reconfiguring the BR (data rate) parameter on both radios. When
the test is complete, click Stop Range Test. XCTU displays another loopback jumper warning
screen reminding you to put the loopback jumper back in its original position.

Get started XBIB-C Micro Mount reference

Digi XBee® 3 802.15.4 RF Module User Guide 27

XBIB-C Micro Mount reference
This picture shows the XBee-C Micro Mount development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-C Micro Mount reference

Digi XBee® 3 802.15.4 RF Module User Guide 28

Get started XBIB-C Micro Mount reference

Digi XBee® 3 802.15.4 RF Module User Guide 29

Number Item Description

1 Secondary USB
(USB MICRO B)

Secondary USB Connector for possible future use. Not used.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the development board. This allows current measurement to
be conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, you can attach a battery to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.

4 USB-C
Connector

Connects to your computer. This is connected to a USB to UART
conversion chip that has the five UART lines passed to the XBee device.
The UART Dip Switch can be used to disconnect these UART lines from
the XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40-pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board to use this functionality.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the development board has I2C if access to this sensor is
desired.

11 XBee Socket This is the socket for the XBee (Micro form factor).

Get started XBIB-C SMT reference

Digi XBee® 3 802.15.4 RF Module User Guide 30

XBIB-C SMT reference
This picture shows the XBee-C SMT development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-C SMT reference

Digi XBee® 3 802.15.4 RF Module User Guide 31

Number Item Description

1 Secondary USB
(USB MICRO B)

Secondary USB Connector for possible future use. Not used.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the dev board. This allows current measurement to be
conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, you can attach a battery to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.

4 USB-C
Connector

Connects to your computer. This is connected to a USB to UART
conversion chip that has the five UART lines passed to the XBee. The
UART Dip Switch can be used to disconnect these UART lines from the
XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40-pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board to use this functionality.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the Dev Board has I2C if access to this sensor is desired.

11 XBee Socket This is the socket for the XBee (SMT form factor)

Get started XBIB-CU TH reference

Digi XBee® 3 802.15.4 RF Module User Guide 32

XBIB-CU TH reference
This picture shows the XBee-CU TH development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-CU TH reference

Digi XBee® 3 802.15.4 RF Module User Guide 33

Number Item Description

1 Secondary USB
(USB MICRO B)
and DIP Switch

Secondary USB Connector for direct programming of modules on some
XBee units. Flip the Dip switches to the right for I2C access to the
board; flip Dip switches to the left to disable I2C access to the board.
The USB_P and USB_N lines are always connected to the XBee,
regardless of Dip switch setting.
This USB port is not designed to power the module or the board. Do not
plug in a USB cable here unless the board is already being powered
through the main USB-C connector. Do not attach a USB cable here if
the Dip switches are pushed to the right.

WARNING! Direct input of USB lines into XBee units or I2C
lines not designed to handle 5V can result in the destruction
of the XBee or I2C components. Could cause fire or serious
injury. Do not plug in a USB cable here if the XBee device is
not designed for it and do not plug in a USB cable here if the
Dip switches are pushed to the right.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the development board. This allows current measurement to
be conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, a battery can be attached to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.
If the USB-C connector is connected to a computer, the power will be
provided through the USB-C connector and not the battery connector.

4 USB-C
Connector

Connects to your computer and provides the power for the
development board. This is connected to a USB to UART conversion chip
that has the five UART lines passed to the XBee. The UART Dip Switch
can be used to disconnect these UART lines from the XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40 pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

Get started XBIB-C-GPS reference

Digi XBee® 3 802.15.4 RF Module User Guide 34

Number Item Description

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board for this functionality to be used.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the development board has I2C if access to this sensor is
desired.

11 XBee Socket This is the socket for the XBee (TH form factor).

12 XBee Test
Point Pins

Allows easy access for probes for all 20 XBee TH pins. Pin 1 is shorted to
Pin 1 on the XBee and so on.

XBIB-C-GPS reference
This picture shows the XBIB-C-GPS module and the table that follows explains the callouts in the
picture.

Note This board is sold separately. You must also have purchased an XBIB-C through-hole, surface-
mount, or micro-mount development board.

Note For a demonstration of how to use MicroPython to parse some of the GPS NMEA sentences from
the UART, print them and report them to Digi Remote Manager, see Run the MicroPython GPS demo.

Get started XBIB-C-GPS reference

Digi XBee® 3 802.15.4 RF Module User Guide 35

Get started Interface with the XBIB-C-GPS module

Digi XBee® 3 802.15.4 RF Module User Guide 36

Number Item Description

1 40-pin
header

This header is used to connect the XBIB-C-GPS board to a compatible XBIB
development board. Insert the XBIB-C-GPS module slowly with alternating
pressure on the upper and lower parts of the connector. If added or removed
improperly, the pins on the attached board could bend out of shape.

2 GPS
unit

This is the CAM-M8Q-0-10 module made by u-blox. This is what makes the GPS
measurements. Proper orientation is with the board laying completely flat, with
the module facing towards the sky.

Interface with the XBIB-C-GPS module
The XBee 3 802.15.4 RF Module can interface with the XBIB-C-GPS board through the large 40-pin
header. This header is designed to fit into XBIB-C development board. This allows the XBee 3 802.15.4
RF Module in the XBIB-C board to communicate with the XBIB-C-GPS board—provided the XBee device
used has MicroPython capabilities (see this link to determine which devices have MicroPython
capabilities). There are two ways to interface with the XBIB-C-GPS board: through the host board’s
Secondary UART or through the I2C compliant lines.
The following picture shows a typical setup:

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_features.htm%3FTocPath%3D_____2

Get started Interface with the XBIB-C-GPS module

Digi XBee® 3 802.15.4 RF Module User Guide 37

I2C communication
There are two I2C lines connected to the host board through the 40-pin header, SCL and SDA. I2C
communication is performed over an I2C-compliant Display Data Channel. The XBIB-C-GPS module
operates in slave mode. The maximum frequency of the SCL line is 400 kHz. To access data through
the I2C lines, the data must be queried by the connected XBee 3 802.15.4 RF Module.
For more information about I2C Operation see the I2C section of the Digi Micro Python Programming
Guide.
For more information on the operation of the XBIB-C-GPS board see the CAM-M8 datasheet. Other
CAM-M8 documentation is located here.

UART communication
There are two UART pins connected from the XBIB-C-GPS to the host board by the 40-pin header: RX
and TX. By default, the UART on the XBIB-C-GPS board is active and sends GPS readings to the
connected device’s secondary UART pins. Readings are transmitted once every second. The baud rate
of the UART is 9600 baud.
For more information about using Micro Python to communicate to the XBIB-C-GPS module, see Class
UART.

Run the MicroPython GPS demo
The Digi MicroPython github repository contains a GPS demo program that parses some of the GPS
NMEA sentences from the UART, prints them and also reports them to Digi Remote Manager.

Note If you are unfamiliar with MicroPython on XBee you should first run some of the tutorials earlier
in this manual to familiarize yourself with the environment. See Get started with MicroPython. For
more detailed information, refer to the Digi MicroPython Programming Guide.

Step 1: Create a Remote Manager developer account
You must have a Remote Manager developer account to be able to use this program. Make sure you
know the user name and password for this account.
If you don't currently have a Remote Manager developer account, you can create a free developer
account.

Step 2: Download or clone the XBee MicroPython repository

1. Navigate to: https://github.com/digidotcom/xbee-micropython/
2. Click Clone or download.
3. You must either clone or download a zip file of the repository. You can use either method.

n Clone: If you are familiar with GIT, follow the standard GIT process to clone the
repository.

n Download
a. Click Download zip to download a zip file of the repository to the download folder

of your choosing.
b. Extract the repository to a location of your choosing on your hard drive.

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.u-blox.com/sites/default/files/CAM-M8-FW3_DataSheet_(UBX-15031574).pdf
https://www.u-blox.com/en/product/cam-m8-series#tab-documentation-resources
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/digidocs/90002219/
http://myacct.digi.com/
http://myacct.digi.com/

Get started Interface with the XBIB-C-GPS module

Digi XBee® 3 802.15.4 RF Module User Guide 38

Step 3: Edit the MicroPython file

1. Navigate to the location of the repository zip file that you created in Step 2.
2. Navigate to: samples/gps
3. Open the MicroPython file: gpsdemo1.py

4. Using the editor of your choice, edit the MicroPython file. At the top of the file, enter the user
name and password for your Remote Manager developer account. The correct location is
indicated in the comments in the file.

Step 4: Run the program

1. Rename the file you edited in Step 3 from gpsdemo1.py tomain.py.
2. Copy the renamed file onto your device's root filesystem directory.
3. Copy the following three modules from the locations specified below into your device's /lib

directory:
n From the /lib directory of the Digi xbee-micropython repository: urequest.py and

remotemanager.py

n From the /lib/sensor directory of the Digi xbee-micropython repository: hdc1080.py

Note These modules are required to be able to run the gpsdemo1.py.

4. Open XCTU and use the MicroPython Terminal to run the demo.
5. Type <CTRL>-R from the MicroPython prompt to run the code.

Get started with MicroPython

This user guide provides an overview of how to use MicroPython with the XBee 3 802.15.4 RF Module.
For in-depth information andmore complex code examples, refer to the Digi MicroPython
Programming Guide. Continue with this user guide for simple examples to get started using
MicroPython on the XBee 3 802.15.4 RF Module.

About MicroPython 40
MicroPython on the XBee 3 802.15.4 RF Module 40
Use XCTU to enter the MicroPython environment 40
Use the MicroPython Terminal in XCTU 41
MicroPython examples 41
Exit MicroPython mode 49
Other terminal programs 50
Use picocom in Linux 51
Micropython help () 52

Digi XBee® 3 802.15.4 RF Module User Guide 39

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Get started with MicroPython About MicroPython

Digi XBee® 3 802.15.4 RF Module User Guide 40

About MicroPython
MicroPython is an open-source programming language based on Python 3.0, with much of the same
syntax and functionality, but modified to fit on small devices with limited hardware resources, such as
an XBee 3 802.15.4 RF Module.
For more information about MicroPython, see www.micropython.org.
For more information about Python, see www.python.org.

MicroPython on the XBee 3 802.15.4 RF Module
The XBee 3 802.15.4 RF Module has MicroPython running on the device itself. You can access a
MicroPython prompt from the XBee 3 802.15.4 RF Module when you install it in an appropriate
development board (XBDB or XBIB), and connect it to a computer via a USB cable.

Note MicroPython is only available through the UART interface and does not work with SPI.

Note MicroPython programming on the device requires firmware version 2003 or newer.

The examples in this user guide assume:

n You have XCTU on your computer. See Configure the device using XCTU.
n You have a serial terminal program installed on your computer. For more information, see Use

the MicroPython Terminal in XCTU. This requires XCTU 6.3.10 or higher.
n You have an XBee 3 802.15.4 RF Module installed on an appropriate development board such as

an XBIB-U-DEV or an XBDB-U-ZB.

n The XBee 3 802.15.4 RF Module is connected to the computer via a USB cable and XCTU
recognizes it.

Use XCTU to enter the MicroPython environment
To use the XBee 3 802.15.4 RF Module in the MicroPython environment:

1. Use XCTU to add the device(s); see Configure the device using XCTU and Add devices to XCTU.
2. The XBee 3 802.15.4 RF Module appears as a box in the Radio Modules information panel. Each

module displays identifying information about itself.
3. Click this box to select the device and load its current settings.

Note To ensure that MicroPython is responsive to input, Digi recommends setting the XBee
UART baud rate to 115200 baud. To set the UART baud rate, select 115200 [7] in the BD field
and click the Write button. We strongly recommend using hardware flow control to avoid data
loss, especially when pasting large amounts of code or text. For more information, see UART
flow control.

4. To put the XBee 3 802.15.4 RF Module into MicroPython mode, in the AP field select

MicroPython REPL [4] and click the Write button .
5. Note which COM port the XBee 3 802.15.4 RF Module is using, because you will need this

information when you use the MicroPython terminal.

https://micropython.org/
https://www.python.org/
https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_populate_device_list.htm

Get started with MicroPython Use the MicroPython Terminal in XCTU

Digi XBee® 3 802.15.4 RF Module User Guide 41

Use the MicroPython Terminal in XCTU
You can use the MicroPython Terminal to communicate with the XBee 3 802.15.4 RF Module when it is
in MicroPython mode.1 This requires XCTU 6.3.10 or higher. To enter MicroPython mode, follow the
steps in Use XCTU to enter the MicroPython environment. To use the MicroPython Terminal:

1. Click the Tools drop-downmenu and select MicroPython Terminal. The terminal window
opens.

2. Click Open to open the Serial Port Configuration window.
3. In the Select the Serial/USB port area, click the COM port that the device uses.
4. Verify that the baud rate and other settings are correct.

5. Click OK. The Open icon changes to Close , indicating that the device is properly connected.

If the >>> prompt appears, you are connected properly. You can now type or paste MicroPython code
in the terminal.

MicroPython examples
This section provides examples of how to use some of the basic functionality of MicroPython with the
XBee 3 802.15.4 RF Module.

Example: hello world
1. At the MicroPython >>> prompt, type the Python command: print("Hello, World!")

2. Press Enter to execute the command. The terminal echos back Hello, World!

Example: enter MicroPython paste mode
In the following examples it is helpful to know that MicroPython supports paste mode, where you can
copy a large block of code from this user guide and paste it instead of typing it character by character.
To use paste mode:

1. Copy the code you want to run. For example, copy the following code that is the code from the
"Hello world" example:

print("Hello World")

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

2. In the terminal, at the MicroPython >>> prompt type Ctrl-+E to enter paste mode. The terminal
displays paste mode; Ctrl-C to cancel, Ctrl-D to finish.

3. Right-click in the MicroPython terminal window and click Paste or press Ctrl+Shift+V to paste.
4. The code appears in the terminal occupying one line. Each line starts with its line number and

three "=" symbols. For example, line 1 starts with 1===.

1See Other terminal programs if you do not use the MicroPython Terminal in XCTU.

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython MicroPython examples

Digi XBee® 3 802.15.4 RF Module User Guide 42

5. If the code is correct, press Ctrl+D to run the code; “Hello World” should print.

Note If you want to exit paste mode without running the code, or if the code did not copy
correctly, press Ctrl+C to cancel and return to the normal MicroPython >>> prompt).

Example: use the time module
The time module is used for time-sensitive operations such as introducing a delay in your routine or a
timer.
The following time functions are supported by the XBee 3 802.15.4 RF Module:

n ticks_ms() returns the current millisecond counter value. This counter rolls over at
0x40000000.

n ticks_diff() compares the difference between two timestamps in milliseconds.
n sleep() delays operation for a set number of seconds.
n sleep_ms() delays operation for a set number of milliseconds.
n sleep_us() delays operation for a set number of microseconds.

Note The standard time.time() function cannot be used, because this function produces the number
of seconds since the epoch. The XBee3 module lacks a realtime clock and cannot provide any date or
time data.

The following example exercises the various sleep functions and uses ticks_diff() to measure
duration:

import time

start = time.ticks_ms() # Get the value from the millisecond counter

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(1000) # sleep for 1000 microseconds

delta = time.ticks_diff(time.ticks_ms(), start)

print("Operation took {} ms to execute".format(delta))

Example: AT commands using MicroPython
AT commands control the XBee 3 802.15.4 RF Module. The "AT" is an abbreviation for "attention", and
the prefix "AT" notifies the module about the start of a command line. For a list of AT commands that
can be used on the XBee 3 802.15.4 RF Module, see AT commands.
MicroPython provides an atcmd() method to process AT commands, similar to how you can use
Commandmode or API frames.
The atcmd() method accepts two parameters:

1. The two character AT command, entered as a string.
2. An optional second parameter used to set the AT command value. If this parameter is not

provided, the AT command is queried instead of being set. This value is an integer, bytes object,
or string, depending on the AT command.

Get started with MicroPython MicroPython examples

Digi XBee® 3 802.15.4 RF Module User Guide 43

Note The xbee.atcmd() method does not support the following AT commands: IS, AS, ED, ND, or DN.

The following is example code that queries and sets a variety of AT commands using xbee.atcmd():

import xbee

Set the NI string of the radio
xbee.atcmd("NI", "XBee3 module")

Configure a destination address using two different data types
xbee.atcmd("DH", 0x0013A200) # Hex
xbee.atcmd("DL", b'\x12\x25\x89\xF5') # Bytes

Read some AT commands and display the value and data type:
print("\nAT command parameter values:")
commands =["DH", "DL", "NI", "CK"]
for cmd in commands:

val = xbee.atcmd(cmd)
print("{}: {:20} of type {}".format(cmd, repr(val), type(val)))

This example code outputs the following:

AT command parameter values:
DH: b'\x00\x13\xa2\x00' of type <class 'bytes'>
DL: b'\x12%\x89\xf5' of type <class 'bytes'>
NI: 'XBee3 module' of type <class 'str'>
CK: 65535 of type <class 'int'>

Note Parameters that store values larger than 16-bits in length are represented as bytes. Python
attempts to print out ASCII characters whenever possible, which can result in some unexpected
output (such as the "%" in the above output). If you want the output from MicroPython to match
XCTU, you can use the following example to convert bytes to hex:

dl_value = xbee.atcmd("DL")
hex_dl_value = hex(int.from_bytes(dl_value, 'big'))

MicroPython networking and communication examples
This section provides networking and communication examples for using MicroPython with the XBee 3
802.15.4 RF Module.

802.15.4 networks with MicroPython
For small networks, it is suitable to use MicroPython on every node. However, there are some inherit
limitations that may prevent you from using MicroPython on some heavily trafficked nodes:

n When running MicroPython, any receivedmessages will be stored in a small receive queue. This
queue only has room for 4 packets andmust be regularly read to prevent data loss. For
networks that will be generating a lot of traffic, the data aggregator may need to operate in
API mode in order to capture all incoming data.

For the examples in this section, the devices should be pre-configured with identical network settings
so that RF communication is possible. To follow the upcoming examples, we need to configure a
second XBee 3 802.15.4 RF Module to use MicroPython.
XCTU only allows a single MicroPython terminal. We will be running example code on both modules,
which requires a second terminal window.

Get started with MicroPython MicroPython examples

Digi XBee® 3 802.15.4 RF Module User Guide 44

Open a second instance of XCTU, and configure a different XBee 3 device for MicroPython following
the steps in Use XCTU to enter the MicroPython environment.

Example: network Discovery using MicroPython
The xbee.discover() method returns an iterator that blocks while waiting for results, similar to
executing an ND request. For more information, see ND (Network Discover).
Each result is a dictionary with fields based on an ND response:

n sender_nwk: 16-bit network address.
n sender_eui64: 8-byte bytes object with EUI-64 address.
n parent_nwk: Set to 0xFFFE on the coordinator and routers; otherwise, this is set to the

network address of the end device's parent.
n node_id: The device's NI value (a string of up to 20 characters, also referred to as Node

Identification).
n node_type: Value of 0, 1 or 2 for coordinator, router, or end device.
n device_type: The device's 32-bit DD value, also referred to as Digi Device Type; this is used to

identify different types of devices or hardware.
n rssi: Relative signal strength indicator (in dBm) of the node discovery request packet received

by the sending node.

Note When printing the dictionary, fields for device_type, sender_nwk and parent_nwk appear in
decimal form. You can use the MicroPython hex() method to print an integer in hexadecimal. Check
the function code for format_eui64 from the Example: communication between two XBee 3 802.15.4
modules topic for code to convert the sender_eui64 field into a hexadecimal string with a colon
between each byte value.

Use the following example code to perform a network discovery:

import xbee, time

Set the network discovery options to include self
xbee.atcmd("NO", 2)
xbee.atcmd("AC")
time.sleep(.5)

Perform Network Discovery and print out the results
print ("Network Discovery in process...")
nodes = list(xbee.discover())
if nodes:

for node in nodes:
print("\nRadio discovered:")
for key, value in node.items():

print("\t{:<12} : {}".format(key, value))

Set NO back to the default value
xbee.atcmd("NO", 0)
xbee.atcmd("AC")

This produces the following output from two discovered nodes:

Radio discovered:
rssi : -63
node_id : Coordinator

Get started with MicroPython MicroPython examples

Digi XBee® 3 802.15.4 RF Module User Guide 45

device_type : 1179648
parent_nwk : 65534
sender_nwk : 0
sender_eui64 : b'\x00\x13\xa2\xff h\x98T'
node_type : 0

Radio discovered:
rssi : -75
node_id : Router
device_type : 1179648
parent_nwk : 65534
sender_nwk : 23125
sender_eui64 : b'\x00\x13\xa2\xffh\x98c&'
node_type : 1

Examples: transmitting data
This section provides examples for transmitting data using MicroPython. These examples assume you
have followed the above examples and the two radios are on the same network.

Example: transmit message
Use the xbee module to transmit a message from the XBee 3 Zigbee device. The transmit() function
call consists of the following parameters:

1. The Destination Address, which can be any of the following:
n Integer for 16-bit addressing
n 8-byte bytes object for 64-bit addressing
n Constant xbee.ADDR_BROADCAST to indicate a broadcast destination
n Constant xbee.ADDR_COORDINATOR to indicate the coordinator

2. The Message as a character string.

If the message is sent successfully, transmit() returns None. If the transmission fails due to an ACK
failure or lack of free buffer space on the receiver, the sent packet will be silently discarded.

Example: transmit a message to the network coordinator

1. From the router, access the MicroPython environment.
2. At the MicroPython >>> prompt, type import xbee and press Enter.
3. At the MicroPython >>> prompt, type xbee.transmit(xbee.ADDR_COORDINATOR, "Hello

World!") and press Enter.
4. On the coordinator, you can issue an xbee.receive() call to output the received packet.

Example: transmit custom messages to all nodes in a network
This program performs a network discovery and sends the message 'Hello <Destination Node
Identifier>!' to individual nodes in the network. For more information, see Example: network
Discovery using MicroPython.

import xbee

Perform a network discovery to gather destination address:
print("Discovering remote nodes, please wait...")
node_list = list(xbee.discover())
if not node_list:

Get started with MicroPython MicroPython examples

Digi XBee® 3 802.15.4 RF Module User Guide 46

raise Exception("Network discovery did not find any remote devices")

for node in node_list:
dest_addr = node['sender_nwk'] # 'sender_eui64' can also be used
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

try:
print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

except Exception as err:
print(err)

print("complete")

Receiving data
Use the receive() function from the xbee module to receive messages. When MicroPython is active on
a device (AP is set to 4), all incoming messages are saved to a receive queue within MicroPython. This
receive queue is limited in size and only has room for 4 messages. To ensure that data is not lost, it is
important to continuously iterate through the receive queue and process any of the packets within.
If the receive queue is full and another message is sent to the device, it will not acknowledge the
packet and the sender generates a failure status of 0x24 (Address not found).
The receive() function returns one of the following:

n None: No message (the receive queue is empty).
n Message dictionary consisting of:

l sender_eui64: 64-bit address (as a "bytes object") of the sending node.
l source_ep: source endpoint as an integer.
l dest_ep: destination endpoint as an integer.
l cluster: cluster id as an integer.
l profile: profile id as an integer.
l broadcast: True or False depending on whether the frame was broadcast or unicast.
l payload: "Bytes object" of the payload. This is a bytes object instead of a string, because

the payload can contain binary data.

Example: continuously receive data
In this example, the format_packet() helper formats the contents of the dictionary and format_eui64
() formats the bytes object holding the EUI-64. The while loop shows how to poll for packets
continually to ensure that the receive buffer does not become full.

def format_eui64(addr):
return ':'.join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s (network 0x%04X)" % (type,

format_eui64(p['sender_eui64']), p['sender_nwk']))
print(" from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'])

Get started with MicroPython MicroPython examples

Digi XBee® 3 802.15.4 RF Module User Guide 47

import xbee, time
while True:

print("Receiving data...")
print("Press CTRL+C to cancel.")
p = xbee.receive()
if p:

format_packet(p)
else:

time.sleep(0.25) # wait 0.25 seconds before checking again

If this node had previously received a packet, it outputs as follows:

Unicast message from EUI-64 00:13:a2:00:41:74:ca:70 (network 0x6D81)
from EP 0xE8 to EP 0xE8, Cluster 0x0011, Profile 0xC105:

b'Hello World!'

Note Digi recommends calling the receive() function in a loop so no data is lost. On modules where
there is a high volume of network traffic, there could be data lost if the messages are not pulled from
the queue fast enough.

Example: communication between two XBee 3 802.15.4 modules
This example combines all of the previous examples and represents a full application that configures a
network, discovers remote nodes, and sends and receives messages.
First, we will upload some utility functions into the flash space of MicroPython so that the following
examples will be easier to read.
Complete the following steps to compile and execute utility functions using flash mode on both
devices:

1. Access the MicroPython environment.
2. Press Ctrl + F.
3. Copy the following code:

import xbee, time
Utility functions to perform XBee 3 802.15.4 operations
def format_eui64(addr):

return ':'.join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s (network 0x%04X)" %

(type, format_eui64(p['sender_eui64']), p['sender_nwk']))
print("from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'],"\n")

def network_status():
If the value of AI is non zero, the module is not connected to a network
return xbee.atcmd("AI")

4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.
5. Press Ctrl+D to finish. The code is uploaded to the flash memory and then compiled. At the

"Automatically run this code at startup" [Y/N]?" prompt, select Y.

Get started with MicroPython MicroPython examples

Digi XBee® 3 802.15.4 RF Module User Guide 48

6. Press Ctrl+R to run the compiled code; this provides access to these utility functions for the
next examples.

WARNING! MicroPython code stored in flash is saved in the file system as main.py. If the
file system has not been formatted, then the following error is generated:
OSError: [Errno 7019] ENODEV
The file system can be formatted in one of three ways:
In XCTU by using the File System Manager.
In Commandmode using the ATFS FORMAT confirm command—see FS (File System).
In MicroPython by issuing the following code:

import os
os.format()

Example code on the coordinator module
The following example code forms an 802.15.4 network as a coordinator, performs a network
discovery to find the remote node, and continuously prints out any incoming data.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Forming a new 802.15.4 network as a coordinator...")
xbee.atcmd("NI", "Coordinator")
network_settings = {"CE": 1, "A2": 4, "CH": 0x13, "MY": 0xFFFF, "ID": 0x3332,
"EE": 0}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

while network_status() != 0:
time.sleep(0.1)

print("Network Established\n")

print("Waiting for a remote node to join...")
node_list = []
while len(node_list) == 0:

Perform a network discovery until the remote joins
node_list = list(xbee.discover())

print("Remote node found, transmitting data")

for node in node_list:
dest_addr = node['sender_eui64'] # using 64-bit addressing
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

Start the receive loop
print("Receiving data...")
print("Hit CTRL+C to cancel")
while True:

p = xbee.receive()
if p:

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_interact_with_xbee_file_system.htm

Get started with MicroPython Exit MicroPython mode

Digi XBee® 3 802.15.4 RF Module User Guide 49

format_packet(p)
else:

time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Example code on the remote module
The following example code joins the 802.15.4 network from the previous example, and continuously
prints out any incoming data. This device also sends its temperature data every 5 seconds to the
coordinator address.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Joining network as an end device...")
xbee.atcmd("NI", "End Device")
network_settings = {"CE": 0, "A1": 4, "CH": 0x13, "ID": 0x3332, "EE": 0}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

while network_status() != 0:
time.sleep(0.1)

print("Connected to Network\n")

last_sent = time.ticks_ms()
interval = 5000 # How often to send a message

Start the transmit/receive loop
print("Sending temp data every {} seconds".format(interval/1000))
while True:

p = xbee.receive()
if p:

format_packet(p)
else:

Transmit temperature if ready
if time.ticks_diff(time.ticks_ms(), last_sent) > interval:

temp = "Temperature: {}C".format(xbee.atcmd("TP"))
print("\tsending " + temp)
try:

xbee.transmit(xbee.ADDR_COORDINATOR, temp)
except Exception as err:

print(err)
last_sent = time.ticks_ms()

time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Exit MicroPython mode
To exit MicroPython mode:

Get started with MicroPython Other terminal programs

Digi XBee® 3 802.15.4 RF Module User Guide 50

1. In the XCTU MicroPython terminal, click the green Close button .
2. Click Close at the bottom of the terminal to exit the terminal.

3. In XCTU's Configuration working mode , change AP API Enable to another mode and click

the Write button . We recommend changing to Transparent mode [0], as most of the
examples use this mode.

Other terminal programs
If you do not use the MicroPython terminal in XCTU, you can use other terminal programs to
communicate with the XBee 3 802.15.4 RF Module. If you use Microsoft Windows, follow the
instructions for Tera Term; if you use Linux, follow the instructions for picocom. To download these
programs:

n Tera Term for Windows, see ttssh2.osdn.jp/index.html.en.
n Picocom for Linux, see developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
n Source code and in-depth information, see github.com/npat-efault/picocom.

Tera Term for Windows
With the XBee 3 802.15.4 RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

1. Open Tera Term. The Tera Term: New connection window appears.
2. Click the Serial radio button to select a serial connection.
3. From the Port: drop-downmenu, select the COM port that the XBee 3 802.15.4 RF Module is

connected to.
4. Click OK. The COMxx - Tera Term VT terminal window appears and Tera Term attempts to

connect to the device at a baud rate of 9600 bps. The terminal will not allow communication
with the device since the baud rate setting is incorrect. You must change this rate as it was
previously set to 115200 bps.

5. Click Setup and Serial Port. The Tera Term: Serial port setup window appears.

6. In the Tera Term: Serial port setup window, set the parameters to the following values:
n Port: Shows the port that the XBee 3 802.15.4 RF Module is connected on.
n Baud rate: 115200

https://ttssh2.osdn.jp/index.html.en
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://github.com/npat-efault/picocom

Get started with MicroPython Use picocom in Linux

Digi XBee® 3 802.15.4 RF Module User Guide 51

n Data: 8 bit
n Parity: none
n Stop: 1 bit
n Flow control: hardware
n Transmit delay: N/A

7. Click OK to apply the changes to the serial port settings. The settings should go into effect
right away.

8. To verify that local echo is not enabled and that extra line-feeds are not enabled:
a. In Tera Term, click Setup and select Terminal.
b. In the New-line area of the Tera Term: Serial port setup window, click the Receive drop-

downmenu and select AUTO if it does not already show that value.
c. Make sure the Local echo box is not checked.

9. Click OK.
10. Press Ctrl+B to get the MicroPython version banner and prompt.

MicroPython v1.9.3-716-g507d0512 on 2018-02-20; XBee3 802.15.4 with EFR32MG
Type "help()" for more information.
>>>

Now you can type MicroPython commands at the >>> prompt.

Use picocom in Linux
With the XBee 3 802.15.4 RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

Note The user must have read and write permission for the serial port the XBee 3 802.15.4 RF Module
is connected to in order to communicate with the device.

1. Open a terminal in Linux and type picocom -b 115200 /dev/ttyUSB0. This assumes you have
no other USB-to-serial devices attached to the system.

2. Press Ctrl+B to get the MicroPython version banner and prompt. You can also press Enter to
bring up the prompt.

If you do have other USB-to-serial devices attached:

1. Before attaching the XBee 3 802.15.4 RF Module, check the directory /dev/ for any devices
named ttyUSBx, where x is a number. An easy way to list these is to type: ls /dev/ttyUSB*.
This produces a list of any device with a name that starts with ttyUSB.

2. Take note of the devices present with that name, and then connect the XBee 3 802.15.4 RF
Module.

3. Check the directory again and you should see one additional device, which is the XBee 3
802.15.4 RF Module.

4. In this case, replace /dev/ttyUSB0 at the top with /dev/ttyUSB<number>, where <number>
is the new number that appeared.

It connects and shows "Terminal ready".

Get started with MicroPython Micropython help ()

Digi XBee® 3 802.15.4 RF Module User Guide 52

You can now type MicroPython commands at the >>> prompt.

Micropython help ()
When you type the help() command at the prompt, it provides a link to online help, control commands
and also usage examples.

>>> help()
Welcome to MicroPython!
For online docs please visit http://docs.micropython.org/.
Control commands:
CTRL-A -- on a blank line, enter raw REPL mode
CTRL-B -- on a blank line, enter normal REPL mode
CTRL-C -- interrupt a running program
CTRL-D -- on a blank line, reset the REPL
CTRL-E -- on a blank line, enter paste mode
CTRL-F -- on a blank line, enter flash upload mode
For further help on a specific object, type help(obj)
For a list of available modules, type help('modules')

--

When you type help('modules') at the prompt, it displays all available Micropython modules.

--
>>> help('modules')
__main__ io time uos
array json ubinascii ustruct
binascii machine uerrno utime

Get started with MicroPython Micropython help ()

Digi XBee® 3 802.15.4 RF Module User Guide 53

builtins micropython uhashlib xbee
errno os uio
gc struct ujson
hashlib sys umachine

Plus any modules on the filesystem

--

When you import a module and type help() with the module as the object, you can query all the
functions that the object supports.

--
>>> import sys
>>> help(sys)
object <module 'sys'> is of type module
__name__ -- sys
path -- ['', '/flash', '/flash/lib']
argv -- ['']
version -- 3.4.0
version_info -- (3, 4, 0)
implementation -- ('micropython', (1, 10, 0))
platform -- xbee3-802.15.4
byteorder -- little
maxsize -- 2147483647
exit -- <function>
stdin -- <io.FileIO 0>
stdout -- <io.FileIO 1>
stderr -- <io.FileIO 2>
modules -- {}
print_exception -- <function>

Secure access

By default, the XBee 3 802.15.4 RF Module is easy to configure and allows for rapid prototyping. For
deployment, you can encrypt networks to prevent unauthorized access. This can prevent entities
outside of the network from accessing data on that network. Some customers may also desire a way
to restrict communication between nodes from inside the same network.
There are three ways to secure your device against unauthorized access:

n Secure remote session
n Disable functionality

Secure session protects against external man-in-the middle attacks by requiring remote devices to
authenticate before they are allowed to make configuration changes.
You can also disable device functionality in order to prevent unexpectedmalicious use of the product.
for example disable MicroPython so that remote code cannot be uploaded and executed.

Secure Sessions 55
Secured remote AT commands 56
Send data to a secured remote node 58
End a session from a server 58
Secure Session API frames 59
Secure transmission failures 60

Digi XBee® 3 802.15.4 RF Module User Guide 54

Secure access Secure Sessions

Digi XBee® 3 802.15.4 RF Module User Guide 55

Secure Sessions
Secure Sessions provide a way to password-protect communication between two nodes on a network
above and beyond the security of the network itself. With secure sessions, a device can 'log in', or
create a session with another device that is encrypted and only readable by the two nodes involved.
By restricting certain actions—such as remote AT commands or FOTA updates—to only be allowed
over one of these secure sessions, you can make it so access to the network does not allow network
configuration. A passwordmust be set and the proper bits of SA (Secure Access) must be set to enable
this feature.
The following definitions relate to secure Sessions:

Term Definition

Client The device that is attempting to log in and send secured data or commands is
called the client.

Server The device that is being logged into and will receive secured data or commands
is called the server.

Secure Session A secure connection between a server and a client where the pair can send and
receive encrypted data that only they can decrypt.

Secure Remote
Password (SRP)

Name of the authentication protocol used to create the secure connection
between the nodes.

Salt A random value generated as part of the authentication process.

Verifier A value derived from a given salt and password.

Configure the secure session password for a device
For a device to act as a secure session server it needs to have a password configured. The password is
configured on the server in the form of a salt and verifier used for the SRP authentication process. The
salt and verifier can be configured in XCTU by selecting the Secure Session Authentication option.
We recommend using XCTU to set a password which will then generate the salt and verifier
parameters, although the salt and verifier values can also be set manually. See *S (Secure Session
Salt) and *V, *W, *X, *Y (Secure Session Verifier) for more information.

Note There is not an enforced password length. We recommend a minimum length of at least eight
characters. The password should not exceed 64 characters, as it will exceed the maximum length of
an API frame.

Start a secure session
A secure session can only be started in API mode. Once you have been authenticated you may send
data in API mode or Transparent mode, but API mode is the recommended way to communicate.
To start a secure session:

1. Send a type Secure Session Control - 0x2E to your local client device with the address of the
server device (not a broadcast address), the options bit field set to 0x00, the timeout for the
session, and the password that was previously set on the server.

2. The client and server devices will send/exchange several packets to authenticate the session.

Secure access Secured remote AT commands

Digi XBee® 3 802.15.4 RF Module User Guide 56

3. When authentication is complete, the client device will output a Secure Session Response -
0xAE to indicate whether the login was a success or failure.

At this point if authentication was successful, the secure session is established and the client can send
secured data to the server until the session times out.

Note A device can have one outgoing session—a session in which the node is a client—at a time.
Attempting to start a new session while a session is already in progress automatically ends the
previous session.

Note A device can have up to four incoming sessions—sessions in which the device is a server—at a
time. Once that number has been reached, additional authentication requests are rejected until one
of the active sessions ends.

End a secure session
A client can end a session by either waiting for the timeout to expire or by ending it manually. To end a
session, send a Secure Session Control - 0x2E to the local client device with bit 0 of the options field
set and with no password.
The device ends the outgoing secure session with the node whose address is specified in the type
0x2E frame. This frame can be sent even if the node does not have a session with the specified
address—the device will send a message to the specified server prompting it to clear out any
incoming session data related to the client (this can be used if the server and client fall out of sync. For
example, if the client device unexpectedly loses power during a session.
Sending a type 0x2E frame with the logout option bit set, and the address field set to the broadcast
address will end whatever outgoing session is currently active on the client and broadcast a request
to all servers to clear any incoming session data related to that client.

Secured remote AT commands

Secure a node against unauthorized remote configuration
Secured Access is enabled by setting bits of SA (Secure Access). Additionally, an SRP Salt (*S) and
verifier (*V, *W, *X, *Y) must be set. You can use XCTU to generate the salt and verifier based on a
password.

Configure a node with a salt and verifier
In this example, the password is pickle.

1. The salt is randomly generated and the verifier is derived from the salt and password as
follows:

*S = 0x1938438E
*V = 0x0771F57C397AE4019347D36FD1B9D91FA05B2E5D7365A161318E46F72942A45D
*W = 0xD4E44C664B5609C6D2BE3258211A7A20374FA65FC7C82895C6FD0B3399E73770
*X = 0x63018D3FEA59439A9EFAE3CD658873F475EAC94ADF7DC6C2C005b930042A0B74
*Y = 0xAEE84E7A00B74DD2E19E257192EDE6B1D4ED993947DF2996CAE0D644C28E8307

Secure access Secured remote AT commands

Digi XBee® 3 802.15.4 RF Module User Guide 57

Note The salt and verifier will not always be the same even if the same password is used to generate
them.

2. Enforce secure access for Remote AT Commands by setting Bit 1 of the SA command:

SA = 0x02

3. Write the configuration to flash using WR (Write).

WARNING! Make sure that this step is completed. If your device resets for any reason and
*S and SA are not written to flash they will revert to defaults, rendering the node open to
insecure access.

4. From now on, any attempt to issue a Remote AT Command Request - 0x17 to this device will
be rejected with a 0x0B status unless a secure session is established first.

Remotely configure a node that has been secured
In the example above a node is secured against unauthorized remote configuration. In this instance,
the secured node acts as a Secure Session Server (remote). The sequence below describes how a
Secure Session Client (local) can authenticate and securely configure the server remotely.

Establish a secure session using the password that was set on the server node

1. Generate a Secure Session Control - 0x2E.

n The destination address must match the 64-bit address (SH + SL) of the remote server.
n Since you are logging in, leave the options field as 0x00.
n Set a five minute timeout, which should give sufficient time for ad hoc configuration. The units

are in tenths of a second, so 0x0BB8 gives you five minutes.
n The options are set for a fixed duration, so after the five minutes expire, both the server and

client emit a modem status indicating the session ended.
n Enter the original password used to generate the verifier from the random salt above.

2. Pass the type 0x2E Control frame into the serial interface of the local client:

n For example, to log into a Secure Session server at address 0013A200 417B2162 for a five
minute duration using the password pickle, use the following frame:
7E 00 12 2E 00 13 A2 00 41 7B 21 62 00 0B B8 70 69 63 6B 6C 65 A2

3. Wait for a Secure Session Response - 0xAE to indicate the session establishment succeeded or
failed with the reason.

n The address of the remote that is responding and the status is included in the response.
n For example, the response to the request above is as follows:

7E 00 0B AE 00 00 13 A2 00 41 7B 21 62 00 5D. The 0x00 status indicates success.

4. Send remote AT Commands to the remote server using the Remote AT Command Request -
0x17 with bit 4 of the Command Options field set. Bit 4 indicates the AT command should be
sent securely.

Secure access Send data to a secured remote node

Digi XBee® 3 802.15.4 RF Module User Guide 58

Note If you are using 802.15.4 firmware you must send secured packets using the device's 64 bit
address. To do so, set MY (16-bit Source Address) to 0xFFFF.

Send data to a secured remote node
The process to send secured data is very similar to remotely configuring a node. The following steps
show how a client node can authenticate with a server node and send data securely.

1. Send a Secure Session Control - 0x2E to the client node with:
n The server's 64-bit address.
n The desired timeout.
n The options field set to 0x00 for fixed timeout login or to 0x04 for inter-packet timeout

refresh login.
n The password of the server node.

2. Wait for the Secure Session Response - 0xAE to determine if the the authentication was
successful.

3. Data can now be sent securely with Transmit Request - 0x10 and Explicit Addressing Command
Request - 0x11 provided that:

n Bit 4 in the transmit options field is set to indicate that the data should be sent
encrypted.

4. The returned Receive Packet - 0x90 and Explicit Receive Indicator - 0x91 receive options fields
should also have bit 4 set.

Note The maximum payload per transmission size is reduced by four bytes due to the additional
encryption overhead. NP (Maximum Packet Payload Bytes) will not reflect this change when the
session is going on.

Note If you use 802.15.4 firmware you must use 64-bit addressing to send secured packets. To do so,
set MY (16-bit Source Address) to 0xFFFF.

A node can be secured against emitting data out the serial port that was received insecurely via the
SA command. This means that a remote node will not emit any serial data if it was received insecurely
(TO (Transmit Options) bit 4 was not set). This includes any data in Transparent mode, 0x80, 0x90 and
0x91 frames.

Note When a device rejects a data transmission (0x80, 0x90, 0x91, or Transparent data) because of its
SA configuration, it does not send an error back to the sender. This means that data transmissions to
a device give a success status even if they are rejected.

End a session from a server
If bit 3 of AZ (Extended API Options) is set, the server emits an extendedmodem status (whenever a
client establishes a session with it) that includes the 64-bit address of the client. Using these statuses
the MCU connected to the server can keep track of sessions established with the server. To end a
session from the server do the following:

Secure access Secure Session API frames

Digi XBee® 3 802.15.4 RF Module User Guide 59

1. Send a Secure Session Control - 0x2E to the server node with:
n The client's 64-bit address.
n The options field set to 0x02 for server side session termination.
n Set the timeout to 0x0000.

2. Wait for the Secure Session Response - 0xAE to determine if the termination was successful.
n The client will emit a modem status 0x3C (Session Ended).
n The server will also emit a modem status (or an extendedmodem status depending on

AZ) of 0x3C (Session Ended).

Note The 64-bit address can be set to the broadcast address to end all incoming sessions.

Note This functionality can be used to end orphaned client-side sessions—in case the server
unexpectedly reset for some reason.

Secure Session API frames
Secure Session can only be established from a node that is operating in API mode (MicroPython
support is forthcoming). The server-side can be in Transparent mode, but the client must be in API
mode. Once a session has been established between a client and server node, the client can be
transitioned to Transparent mode; and if bit 4 of TO is set, the client will encrypt data sent in
Transparent mode for the duration of session.
There are four frames that are used for controlling and observing a secure session.

n Secure Session Control - 0x2E: This frame is passed to the client that wishes to log into or out
of a server. Any attempt to use the Control frame will generate a response frame.

n Secure Session Response - 0xAE: This frame returns the status of the previously sent 0x2E
frame indicating whether it was successful or not.

n Modem Status - 0x8A: The server will also emit a modem status whenever an attempt
succeeds, fails, or was terminated. The client will also emit modem statuses if the session
times out.

n Extended Modem Status - 0x98: If bit 3 of AZ is set then modem statuses will be replaced with
extendedmodem statuses. These frames will contain the status that caused them to be
emitted as well as the address of the node that initiated the session, the session options, and
the timeout value.

Frame exchanges:

Secure access Secure transmission failures

Digi XBee® 3 802.15.4 RF Module User Guide 60

Secure transmission failures
This section describes the error messages you can see when trying to send a secure packet.

Data Frames - 0x10 and 0x11 frames
n Response frame type: Extended Transmit Status - 0x8B

Possible error statuses:

Status Description Reason

0x34 No Secure
Session
Connection

The sending node does not have an active session with the destination
node.

0x35 Encryption
Failure

The encryption process failed. Only likely to be seen when using manual
SRP and when an invalid encryption parameter was passed in.

Remote AT Commands- 0x17 frames
n Response frame type: Remote AT Command Response- 0x97

Possible error statuses:

Status Description Reason

0x0B No Secure Session
Connection

The sending node does not have an active session with the
destination node.

0x0C Encryption Error There was an internal encryption error on the radio.

0x0D TO Bit Not Set The client has a session with the server but forgot to set the TO
bit.

File system

For detailed information about using MicroPython on the XBee 3 802.15.4 RF Module refer to the Digi
MicroPython Programming Guide.

Overview of the file system 62
Directory structure 62
Paths 62
Limitations 62
XCTU interface 63

Digi XBee® 3 802.15.4 RF Module User Guide 61

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

File system Overview of the file system

Digi XBee® 3 802.15.4 RF Module User Guide 62

Overview of the file system
XBee 3 802.15.4 RF Module firmware versions 2003 and later include support for storing files in
internal flash memory.

CAUTION! You need to format the file system if upgrading a device that originally shipped
with older firmware. You can use XCTU, AT commands or MicroPython for that initial format
or to erase existing content at any time.

Note To use XCTU with file system, you need XCTU 6.4.0 or newer.

See FS FORMAT confirm in FS (File System) and ensure that the format is complete.

Directory structure
The XBee 3 802.15.4 RF Module's internal flash appears in the file system as /flash, the only entry at
the root level of the file system. Files and directories other than /flash cannot be created within the
root directory, only within /flash. By default /flash contains a lib directory intended for MicroPython
modules.

Paths
The XBee 3 802.15.4 RF Module stores all of its files in the top-level directory /flash. On startup, the
ATFS commands and MicroPython each use that directory as their current working directory. When
specifying the path to a file or directory, it is interpreted as follows:

n Paths starting with a forward slash are "absolute" andmust start with /flash to be valid.
n All other paths are relative to the current working directory.
n The directory .. refers to the parent directory, so an operation on ../filename.txt that takes

place in the directory /flash/test accesses the file /flash/filename.txt.
n The directory . refers to the current directory, so the command ATFS ls . lists files in the

current directory.
n Names are case-insensitive, so FILE.TXT, file.txt and FiLe.TxT all refer to the same file.
n File and directory names are limited to 64 characters, and can only contain letters, numbers,

periods, dashes and underscores. A period at the end of the name is ignored.
n The full, absolute path to a file or directory is limited to 255 characters.

Limitations
The file system on the XBee 3 802.15.4 RF Module has a few limitations when compared to
conventional file systems:

n When a file on the file system is deleted, the space it was using is only reclaimed if it is found at
the end of the file system. Deleted data that is contiguous with the last placed deleted file is
also reclaimed.

n The file system can only have one file open for writing at a time.
n The file system cannot create new directories while a file is open for writing.

File system XCTU interface

Digi XBee® 3 802.15.4 RF Module User Guide 63

n Files cannot be renamed.
n The contents of the file system will be lost when any firmware update is performed. See OTA

file system upgrades for information on how to put files on a device after a FOTA update.

XCTU interface
XCTU releases starting with 6.4.0 include a File System Manager in the Tools menu. You can upload
files to and download files from the device, in addition to renaming and deleting existing files and
directories. See the File System manager tool section of the XCTU User Guide for details of its
functionality.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_file_system_manager_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Get started with BLE

Bluetooth® Low Energy (BLE) is a RF protocol that enables you to connect your XBee device to
another device. Both devices must have BLE enabled.
For example, you can use your cellphone to connect to your XBee device, and then from your phone,
configure and program the device.
Digi created the Digi XBee Mobile SDK, a set of libraries, examples and documentation that help you
developmobile applications to interact with XBee devices through their BLE interface. For this
purpose, we provide two easy-to-use libraries that allow you to create XBee mobile native apps:

n XBee Library for Xamarin, to develop cross-platform mobile applications using C# language (iOS
and Android).

n XBee Library for Android, to develop Android applications using Java

The XBee is the server and allows client devices, such as a cellphone, to configure the XBee or data
transfer with the User Data Relay frame. The XBee cannot communicate with another XBee over BLE,
as the XBee is strictly a BLE server. The possibilities are:

n XBee 3: can communicate with mobile devices over BLE
n XBee 3: can communicate with third party devices such as the Nordic nRF and SiLabs BGM over

BLE
n XBee 3: cannot communicate with another XBee 3 over BLE

Enable BLE on the XBee 3 802.15.4 RF Module 65
Enable BLE and configure the BLE password 65
Get the Digi XBee Mobile phone application 66
Connect with BLE and configure your XBee 3 device 67

Digi XBee® 3 802.15.4 RF Module User Guide 64

https://www.digi.com/products/embedded-systems/digi-xbee/digi-xbee-tools/digi-xbee-mobile-sdk
https://github.com/digidotcom/xbee-csharp
https://github.com/digidotcom/xbee-android

Get started with BLE Enable BLE on the XBee 3 802.15.4 RF Module

Digi XBee® 3 802.15.4 RF Module User Guide 65

Enable BLE on the XBee 3 802.15.4 RF Module
To enable BLE on a XBee 3 802.15.4 RF Module and verify the connection:

1. Set up the XBee 3 802.15.4 RF Module andmake sure to connect the antenna to the device.
2. Enable BLE and configure the BLE password.
3. Get the Digi XBee Mobile phone application.
4. Connect with BLE and configure your XBee 3 device.

Note The BLE protocol is disabled on the XBee 3 802.15.4 RF Module by default. You can create a
custom factory default configuration that ensures BLE is always enabled. See Custom configuration:
Create a new factory default.

Enable BLE and configure the BLE password
Some of the latest XBee 3 devices support Bluetooth Low Energy (BLE) as an extra interface for
configuration. If you want to use this feature, you have to enable BLE. You must also enable security by
setting a password on the XBee 3 802.15.4 RF Module in order to connect, configure, or send data over
BLE.
Use XCTU to configure the BLE password. Make sure you have installed or updated XCTU to version
6.4.2 or newer. Earlier versions of XCTU do not include the BLE configuration features. See Download
and install XCTU for installation instructions.
Before you begin, you should determine the password you want to use for BLE on the XBee 3 802.15.4
RF Module and store it in a secure place. We recommend a secure password of at least eight
characters and a random combination of letters, numbers, and special characters. We recommend
using a security management tool such as LastPass or Keepass for generating and storing passwords
for many devices.

Note When you enter the BLE password in XCTU, the salt and verifier values are calculated as you set
your password. For more information on how these values are used in the authentication process, see
BLE Unlock Request - 0x2C.

1. Launch XCTU .

2. Switch to Configuration working mode .
3. Select a BLE compatible radio module from the device list.
4. Select Enabled[1] from the BT Bluetooth Enable command drop-down.

5. Click the Write setting button . The Bluetooth authentication not set dialog appears.

Note If BLE has been previously configured, the Bluetooth authentication not set dialog does not
appear. If this happens, click Configure in the Bluetooth Options section to display the Configure
Bluetooth Authentication dialog.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_downloading_installing_xctu.htm%3FTocPath%3DDownload%2520and%2520install%2520XCTU|_____0
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_downloading_installing_xctu.htm%3FTocPath%3DDownload%2520and%2520install%2520XCTU|_____0

Get started with BLE Get the Digi XBee Mobile phone application

Digi XBee® 3 802.15.4 RF Module User Guide 66

6. Click Configure in the dialog. The Configure Bluetooth Authentication dialog appears.
7. In the Password field, type the password for the device. As you type, the Salt and Verifier fields

are automatically calculated and populated in the dialog as shown above. This password is
used when you connect to this XBee device via BLE using the Digi XBee Mobile app.

8. Click OK to save the configuration.

Get the Digi XBee Mobile phone application
To see the nearby devices that have BLE enabled, you must get the free Digi XBee Mobile application
from the iOS App Store or Google Play and downloaded to your phone.

1. On your phone, go to the App store.
2. Search for: Digi XBee Mobile.
3. Download and install the app.

The Digi is compatible with the following operating systems and versions:

Get started with BLE Connect with BLE and configure your XBee 3 device

Digi XBee® 3 802.15.4 RF Module User Guide 67

n Android 5.0 or higher
n iOS 11 or higher

Connect with BLE and configure your XBee 3 device
You can use the Digi XBee Mobile application to verify that BLE is enabled on your XBee device.

1. Get the Digi XBee Mobile phone application.
2. Open the Digi XBee Mobile application. The Find XBee devices screen appears and the app

automatically begins scanning for devices. All nearby devices with BLE enabled are displayed in
a list.

3. Scroll through the list to find your XBee device.
The first time you open the app on a phone and scan for devices, the device list contains only
the name of the device and the BLE signal strength. No identifying information for the device
displays. After you have authenticated the device, the device information is cached on the
phone. The next time the app on this phone connects to the XBee device, the IMEI for the
device displays in the app device list.

Note The IMEI is derived from the SH and SL values.

4. Tap the XBee device name in the list. A password dialog appears.
5. Enter the password you previously configured for the device in XCTU.
6. TapOK. The Device Information screen displays. You can now scroll through the settings for

the device and change the device's configuration as needed.

BLE reference

BLE advertising behavior and services 69
Device Information Service 69
XBee API BLE Service 69
API Request characteristic 69
API Response characteristic 70

Digi XBee® 3 802.15.4 RF Module User Guide 68

BLE reference BLE advertising behavior and services

Digi XBee® 3 802.15.4 RF Module User Guide 69

BLE advertising behavior and services
When the Bluetooth radio is enabled, periodic BLE advertisements are transmitted. The
advertisement data includes the product name in the Complete Local Name field. When an XBee
device connects to the Bluetooth radio, the BLE services are listed:

n Device Information Service
n XBee API BLE Service

Device Information Service
The standard Device Information Service is used. The Manufacturer, Model, and Firmware Revision
characters are provided inside the service.

XBee API BLE Service
You can configure the XBee 3 802.15.4 RF Module through the BLE interface using API frame requests
and responses. The API frame format through Bluetooth is equivalent to setting AP = 1 and
transmitting the frames over the UART or SPI interface. API frames can be executed over Bluetooth
regardless of the AP setting.
The BLE interface allows these frames:

n BLE Unlock Request - 0x2C
n User Data Relay Input - 0x2D
n BLE Unlock Response - 0xAC
n Local AT Command Request - 0x08
n Queue Local AT Command Request - 0x09

This API reference assumes that you are familiar with Bluetooth and GATT services. The specifications
for Bluetooth are an open standard and can be found at the following links:

n Bluetooth Core Specifications: bluetooth.com/specifications/bluetooth-core-specification
n Bluetooth GATT: bluetooth.com/specifications/gatt/generic-attributes-overview

The XBee API BLE Service contains two characteristics: the API Request characteristic and the API
Response characteristic. The UUIDs for the service and its characteristics are listed in the table
below.

Characteristic UUID

API Service UUID 53da53b9-0447-425a-b9ea-9837505eb59a

API Request Characteristic UUID 7dddca00-3e05-4651-9254-44074792c590

API Response Characteristic UUID f9279ee9-2cd0-410c-81cc-adf11e4e5aea

API Request characteristic
UUID: 7dddca00-3e05-4651-9254-44074792c590
Permissions: Writeable

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

BLE reference API Response characteristic

Digi XBee® 3 802.15.4 RF Module User Guide 70

XBee API frames are broken into chunks and transmitted sequentially to the request characteristic
using write operations. Valid frames are then processed and the result is returned through indications
on the response characteristic.
API frames do not need to be written completely in a single write operation to the request
characteristic. In fact, Bluetooth limits the size of a written value to 3 bytes smaller than the
configured Maximum Transmission Unit (MTU), which defaults to 23, meaning that by default, you can
only write 20 bytes at a time.
After connecting you must send a valid Bluetooth Unlock API Frame in order to authenticate the
connection. If the BLE Unlock API - 0x2C frame has not been executed, all other API frames are silently
ignored and are not processed.

API Response characteristic
UUID: f9279ee9-2cd0-410c-81cc-adf11e4e5aea
Permissions: Readable, Indicate
Responses to API requests made to the request characteristic are returned through the response
characteristics. This characteristic cannot be read directly.
Response data is presented through indications on this characteristic. Indications are acknowledged
and re-transmitted at the BLE link layer and application layer and provide a robust transport for this
data.

Configure the XBee 3 802.15.4 RF Module

Software libraries 72
Firmware over-the-air (FOTA) update 72
Custom defaults 72
Custom configuration: Create a new factory default 73
XBee bootloader 73
Send a firmware image 74
XBee Network Assistant 74
XBee Multi Programmer 75

Digi XBee® 3 802.15.4 RF Module User Guide 71

Configure the XBee 3 802.15.4 RF Module Software libraries

Digi XBee® 3 802.15.4 RF Module User Guide 72

Software libraries
One way to communicate with the XBee 3 802.15.4 RF Module is by using a software library. The
libraries available for use with the XBee 3 802.15.4 RF Module include:

n XBee Java library
n XBee Python library

The XBee Java Library is a Java API. The package includes the XBee library, its source code and a
collection of samples that help you develop Java applications to communicate with your XBee devices.
The XBee Python Library is a Python API that dramatically reduces the time to market of XBee
projects developed in Python and facilitates the development of these types of applications, making it
an easy process.

Firmware over-the-air (FOTA) update
The XBee 3 802.15.4 RF Module supports FOTA updates using XCTU version 6.3.0 or higher. For
instructions on performing a FOTA firmware update with XCTU, see How to update the firmware of
your modules in the XCTU User Guide.
FOTA capability is only available whenMM (Mac Mode) = 0 or 3.

Custom defaults
Custom defaults allow you to preserve a subset of the device configuration parameters even after
returning to default settings using RE (Restore Defaults). This can be useful for settings that identify
the device—such as NI (Node Identifier)—or settings that could make remotely recovering the device
difficult if they were reset—such as ID (Extended PAN ID).

Note You must send these commands as local AT commands, they cannot be set using Remote AT
Command Request - 0x17.

Set custom defaults
Use %F (Set Custom Default) to set custom defaults. When the XBee 3 802.15.4 RF Module receives
%F it takes the next command it receives and applies it to both the current configuration and the
custom defaults.
To set custom defaults for multiple commands, send a %F before each command.

Restore factory defaults
!C (Clear Custom Defaults) clears all custom defaults, so that RE (Restore Defaults) will restore the
device to factory defaults. Alternatively, R1 (Restore Factory Defaults) restores all parameters to
factory defaults without erasing their custom default values.

Limitations
There is a limitation on the number of custom defaults that can be set on a device. The number of
defaults that can be set depends on the size of the saved parameters and the devices' firmware
version. When there is no more room for custom defaults to be saved, any command sent immediately
after a %F returns an error.

http://www.digi.com/resources/documentation/digidocs/90001438/Default.htm
http://xbplib.readthedocs.io/en/latest/
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Configure the XBee 3 802.15.4 RF Module Custom configuration: Create a new factory default

Digi XBee® 3 802.15.4 RF Module User Guide 73

Custom configuration: Create a new factory default
You can create a custom configuration that is used as a new factory default. This feature is useful if,
for example, you need to maintain certain settings for manufacturing or want to ensure a feature is
always enabled. When you use RE (Restore Defaults) to perform a factory reset on the device, the
custom configuration is set on the device after applying the original factory default settings.
For example, by default Bluetooth is disabled on devices. You can create a custom configuration in
which Bluetooth is enabled by default. When you use RE to reset the device to the factory defaults, the
Bluetooth configuration set to the custom configuration (enabled) rather than the original factory
default (disabled).
The custom configuration is stored in non-volatile memory. You can continue to create and save
custom configurations until the XBee 3 802.15.4 RF Module's memory runs out of space. If there is no
space left to save a configuration, the device returns an error.
You can use !C (Clear Custom Defaults) to clear or overwrite a custom configuration at any time.

Set a custom configuration
1. Open XCTU and load your device.
2. Enter Commandmode.
3. Perform the following process for each configuration that you want to set as a factory default.

a. Send the Set Custom Default command, AT%F. This command enables you to enter a
custom configuration.

b. Send the custom configuration command. For example: ATBT 1. This command sets the
default for Bluetooth to enabled.

Clear all custom configuration on a device
After you have set configurations using %F (Set Custom Default), you can return all configurations to
the original factory defaults.

1. Open XCTU and load the device.
2. Enter Commandmode.
3. Send AT!C.

XBee bootloader
You can update firmware on the XBee 3 802.15.4 RF Module serially. This is done by invoking the XBee
3 bootloader and transferring the firmware image using XMODEM.
This process is also used for updating a local device's firmware using XCTU.
XBee devices use a modified version of Silicon Labs' Gecko bootloader. This bootloader version
supports a custom entry mechanism that uses module pins DIN, DTR/SLEEP_RQ, and RTS.
To invoke the bootloader using hardware flow control lines, do the following:

1. Set DTR/SLEEP_RQ low (CMOS0V) and RTS high.
2. Send a serial break to the DIN pin and power cycle or reset the module.
3. When the device powers up, set DTR/SLEEP_RQ and DIN to low (CMOS0V) and RTS should be

high.
4. Terminate the serial break and send a carriage return at 115200 baud to the device.

Configure the XBee 3 802.15.4 RF Module Send a firmware image

Digi XBee® 3 802.15.4 RF Module User Guide 74

5. If successful, the device sends the Silicon Labs' Gecko bootloader menu out the DOUT pin at
115200 baud.

6. You can send commands to the bootloader at 115200 baud.

Note Disable hardware flow control when entering and communicating with the bootloader.

All serial communications with the module use 8 data bits, no parity bit, and 1 stop bit.
You can also invoke the bootloader from the XBee application by sending %P (Invoke Bootloader).

Send a firmware image
After invoking the bootloader, a menu is sent out the UART at 115200 baud. To upload a firmware
image through the UART interface:

1. Look for the bootloader prompt BL > to ensure the bootloader is active.
2. Send an ASCII 1 character to initiate a firmware update.
3. After sending a 1, the device waits for an XModem CRC upload of a .gbl image over the serial

line at 115200 baud. Send the .gbl file to the device using standard XMODEM-CRC.

If the firmware image is successfully loaded, the bootloader outputs a “complete” string. Invoke the
newly loaded firmware by sending a 2 to the device.
If the firmware image is not successfully loaded, the bootloader outputs an "aborted string". It return
to the main bootloader menu. Some causes for failure are:

n Over 1 minute passes after the command to send the firmware image and the first block of the
image has not yet been sent.

n A power cycle or reset event occurs during the firmware load.
n A file error or a flash error occurs during the firmware load. The following table contains errors

that could occur during the XMODEM transfer.

Error Cause Workaround

0x18 This error is observed when a serial upload attempt
has been abruptly discontinued by invoking Ctrl+C
and subsequently another attempt is made to
upload a gbl by pressing 1 on the bootloader menu.

Press 2 on the bootloader menu. The
bootloader performs a reboot and the
menu gets displayed again. Now
press 1 and begin uploading the gbl.

XBee Network Assistant
The XBee Network Assistant is an application designed to inspect andmanage RF networks created
by Digi XBee devices. Features include:

n Join and inspect any nearby XBee network to get detailed information about all the nodes it
contains.

n Update the configuration of all the nodes of the network, specific groups, or single devices
based on configuration profiles.

n Geo-locate your network devices or place them in custommaps and get information about the
connections between them.

Configure the XBee 3 802.15.4 RF Module XBee Multi Programmer

Digi XBee® 3 802.15.4 RF Module User Guide 75

n Export the network you are inspecting and import it later to continue working or work offline.
n Use automatic application updates to keep you up to date with the latest version of the tool.

See the XBee Network Assistant User Guide for more information.
To install the XBee Network Assistant:

1. Navigate to digi.com/xbeenetworkassistant.
2. Click General Diagnostics, Utilities and MIBs.
3. Click the XBee Network Assistant - Windows x86 link.
4. When the file finishes downloading, run the executable file and follow the steps in the XBee

Network Assistant Setup Wizard.

XBee Multi Programmer
The XBee Multi Programmer is a combination of hardware and software that enables partners and
distributors to program multiple Digi Radio frequency (RF) devices simultaneously. It provides a fast
and easy way to prepare devices for distribution or large networks deployment.
The XBee Multi Programmer board is an enclosed hardware component that allows you to program up
to six RF modules thanks to its six external XBee sockets. The XBee Multi Programmer application
communicates with the boards and allows you to set up and execute programming sessions. Some of
the features include:

n Each XBee Multi Programmer board allows you to program up to six devices simultaneously.
Connect more boards to increase the programming concurrency.

n Different board variants cover all the XBee form factors to program almost any Digi RF device.

Download the XBee Multi Programmer application from: digi.com/support/productdetail?pid=5641
See the XBee Multi Programmer User Guide for more information.

https://www.digi.com/resources/documentation/digidocs/90002288/Default.htm
https://www.digi.com/support/productdetail?pid=5642
https://www.digi.com/support/productdetail?pid=5641
https://www.digi.com/resources/documentation/digidocs/90002263/default.htm

Modes

Transparent operating mode 77
API operating mode 77
Commandmode 77
Idle mode 80
Transmit mode 80
Receive mode 80

Digi XBee® 3 802.15.4 RF Module User Guide 76

Modes Transparent operating mode

Digi XBee® 3 802.15.4 RF Module User Guide 77

Transparent operating mode
Devices operate in this mode by default. The device acts as a serial line replacement when it is in
Transparent operating mode. The device queues all UART data it receives through the DIN pin for RF
transmission. When a device receives RF data, it sends the data out through the DOUT pin. You can set
the configuration parameters using Commandmode.
Transparent operating mode is not available when using the SPI interface; see SPI operation.

Serial-to-RF packetization
Data is buffered in the incoming serial buffer until one of the following causes the data to be
packetized and transmitted:

1. No serial characters are received for the amount of time determined by the RO (Packetization
Timeout) parameter. If RO = 0, packetization begins when a character is received.

2. The maximum number of characters that will fit in an RF packet is received. There are a
number of factors that determine payload size. You can query the NP (Maximum Packet
Payload Bytes) to determine the maximum payload size based on current configuration. For
more information, see Maximum payload.

3. The Commandmode Sequence—GT + CC + GT—is received; this is any data in the serial receive
buffer received before the sequence is transmitted. For more information, see Enter Command
mode.

If the device cannot immediately transmit (for instance, if it is already receiving RF data), the serial
data is stored in the serial receive buffer. The data is packetized and sent at any RO timeout or when
NP bytes are received.
If the serial receive buffer becomes full, hardware flow control must be implemented in order to
prevent overflow—loss of data between the host and device.

API operating mode
Application programming interface (API) operating mode is an alternative to Transparent mode. It is
helpful in managing larger networks and is more appropriate for performing tasks such as collecting
data from multiple locations or controlling multiple devices remotely. API mode is a frame-based
protocol that allows you to direct data on a packet basis. It can be particularly useful in large
networks where you need control over the operation of the radio network or when you need to know
which node a data packet is from. The device communicates UART or SPI data in packets, also known
as API frames. This mode allows for structured communications with serial devices.
For more information, see API mode overview.

Command mode
Commandmode is a state in which the firmware interprets incoming characters as commands. It
allows you to modify the device’s configuration using parameters you can set using AT
commands. When you want to read or set any parameter of the XBee 3 802.15.4 RF Module using this
mode, you have to send an AT command. Every AT command starts with the letters AT followed by the
two characters that identify the command and then by some optional configuration values.
The operating modes of the XBee 3 802.15.4 RF Module are controlled by the AP (API Enable) setting,
but Commandmode is always available as a mode the device can enter while configured for any of the
operating modes.

Modes Command mode

Digi XBee® 3 802.15.4 RF Module User Guide 78

Commandmode is available on the UART interface for all operating modes. You cannot use the SPI
interface to enter Commandmode unless using SPI for the serial interface.

Enter Command mode
When using the default configuration values for GT and CC, you must enter +++ preceded and followed
by one second of silence—no input—to enter Commandmode. However, both GT and CC are
configurable. This means that the silence before and after the escape sequence—GT—and the escape
characters themselves—CC—can be changed. For example, if GT is 5DC and CC is 31, then Command
mode can be entered by typing 111 preceded and followed by 1.5 seconds of silence. When the
entrance criteria are met the device responds with OK\r on UART signifying that it has entered
Commandmode successfully and is ready to start processing AT commands.
If configured to operate in Transparent operating mode, when entering Commandmode the XBee 3
802.15.4 RF Module knows to stop sending data and start accepting commands locally.

Note Do not press Return or Enter after typing +++ because it interrupts the guard time silence and
prevents you from entering Commandmode.

When the device is in Commandmode, it listens for user input and is able to receive AT commands on
the UART. If CT time (default is 10 seconds) passes without any user input, the device drops out of
Commandmode and returns to the previous operating mode. You can force the device to leave
Commandmode by sending CN (Exit Commandmode).
You can customize the command character, the guard times and the timeout in the device’s
configuration settings. For more information, see CC (Command Character), CT (Command Mode
Timeout) and GT (Guard Times).

Troubleshooting
Failure to enter Commandmode is often due to baud rate mismatch. Ensure that the baud rate of the
connection matches the baud rate of the device. By default, BD (UART Baud Rate) = 3 (9600 b/s).
There are two alternative ways to enter Commandmode:

n A serial break for six seconds enters Commandmode. You can issue the "break" command
from a serial console, it is often a button or menu item.

n Asserting DIN (serial break) upon power up or reset enters Commandmode. XCTU guides you
through a reset and automatically issues the break when needed.

Note You must assert RTS for both of these methods, otherwise the device enters the bootloader.

Both of these methods temporarily set the device's baud rate to 9600 and return an OK on the UART
to indicate that Commandmode is active. When Commandmode exits, the device returns to normal
operation at the baud rate that BD is set to.

Send AT commands
Once the device enters Commandmode, use the syntax in the following figure to send AT commands.
Every AT command starts with the letters AT, which stands for "attention." The AT is followed by two
characters that indicate which command is being issued, then by some optional configuration values.
To read a parameter value stored in the device’s register, omit the parameter field.

Modes Command mode

Digi XBee® 3 802.15.4 RF Module User Guide 79

The preceding example changes NI (Node Identifier) to 2.

Multiple AT commands
You can sendmultiple AT commands at a time when they are separated by a comma in Command
mode; for example, ATNIMy XBee,AC<cr>.
The preceding example changes the NI (Node Identifier) toMy XBee andmakes the setting active
through AC (Apply Changes).

Parameter format
Refer to the list of AT commands for the format of individual AT command parameters. Valid formats
for hexidecimal values include with or without a leading 0x for example FFFF or 0xFFFF.

Response to AT commands
When using AT commands to set parameters the XBee 3 802.15.4 RF Module responds with OK<cr> if
successful and ERROR<cr> if not.

Apply command changes
Any changes you make to the configuration command registers using AT commands do not take effect
until you apply the changes. For example, if you send the BD command to change the baud rate, the
actual baud rate does not change until you apply the changes. To apply changes:

1. Send AC (Apply Changes).
2. SendWR (Write). In this case, changes are only applied following a reset. The WR command by

itself does not apply changes.
or:

3. Exit Commandmode. You can exit Commandmode in two ways: Either enter the CN command
or wait for Commandmode to timeout as specified by the CT parameter.

Make command changes permanent
Send a WR (Write) command to save the changes.WRwrites parameter values to non-volatile memory
so that parameter modifications persist through subsequent resets.
Send an RE (Restore Defaults) followed byWR to restore parameters back to their factory defaults.
The next time the device is reset the default settings are applied.

Exit Command mode
1. Send CN (Exit Commandmode) followed by a carriage return.

or:

Modes Idle mode

Digi XBee® 3 802.15.4 RF Module User Guide 80

2. If the device does not receive any valid AT commands within the time specified by CT
(Command Mode Timeout), it returns to Transparent or API mode. The default Commandmode
timeout is 10 seconds.

For an example of programming the device using AT Commands and descriptions of each configurable
parameter, see AT commands.

Idle mode
When not receiving or transmitting data, the XBee 3 802.15.4 RF Module is in Idle mode. During Idle
mode, the device listens for valid data on both the RF and serial ports.
If configured for Sleep support, the XBee 3 802.15.4 RF Module only transitions to a low power state
when in Idle mode.

Transmit mode
Transmit mode is the mode in which the device is transmitting data. This typically happens after data
is received from the serial port.

Receive mode
This is the default mode for the XBee 3 802.15.4 RF Module. The device is in Receive mode when it is
not transmitting data. If a destination node receives a valid RF packet, the destination node transfers
the data to its serial transmit buffer.

Serial communication

Serial interface 82
Serial receive buffer 82
Serial transmit buffer 82
UART data flow 82
Flow control 83

Digi XBee® 3 802.15.4 RF Module User Guide 81

Serial communication Serial interface

Digi XBee® 3 802.15.4 RF Module User Guide 82

Serial interface
The XBee 3 802.15.4 RF Module interfaces to a host device through a serial port. The device can
communicate through its serial port:

n Through logic and voltage compatible universal asynchronous receiver/transmitter (UART).
n Through a level translator to any serial device, for example through an RS-232 or USB interface

board.
n Through SPI, as described in SPI communications.

Serial receive buffer
When serial data enters the device through the DIN pin or the SPI_MOSI pin, it stores the data in the
serial receive buffer until the device can process it. Under certain conditions, the device may not be
able to process data in the serial receive buffer immediately. If large amounts of serial data are sent
to the device such that the serial receive buffer overflows, then the device discards all incoming data
until it is able to process the data in the buffer. The size of the Serial receive buffer is 960 Bytes; the
serial buffer may be reduced in size if RAM requirements cannot be met in future firmware releases. If
the UART is in use, you can avoid this by the host side by honoring clear-to-send (CTS) flow control.

Serial transmit buffer
When the device receives RF data, it moves the data into the serial transmit buffer and sends it out
the UART. If the serial transmit buffer becomes full and the system buffers are also full, then it drops
the entire RF data packet. The size of the Serial transmit buffer is 304 Bytes; the serial buffer may be
reduced in size if RAM requirements cannot be met in future firmware releases. Whenever the device
receives data faster than it can process and transmit the data out the serial port, there is a potential
of dropping data.

UART data flow
Devices that have a UART interface connect directly to the pins of the XBee 3 802.15.4 RF Module as
shown in the following figure. The figure shows system data flow in a UART-interfaced environment.
Low-asserted signals have a horizontal line over the signal name.

For more information about hardware specifications for the UART, see the XBee 3 Hardware Reference
Manual.

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

Serial communication Flow control

Digi XBee® 3 802.15.4 RF Module User Guide 83

Serial data
A device sends data to the XBee 3 802.15.4 RF Module's UART as an asynchronous serial signal. When
the device is not transmitting data, the signals should idle high.
For serial communication to occur, you must configure the UART of both devices (the microcontroller
and the XBee 3 802.15.4 RF Module) with compatible settings for the baud rate, parity, start bits, stop
bits, and data bits.
Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high).
The following diagram illustrates the serial bit pattern of data passing through the device. The
diagram shows UART data packet 0x1F (decimal number 31) as transmitted through the device.

You can configure the UART baud rate, parity, and stop bits settings on the device with the BD, NB,
and SB commands respectively. For more information, see UART interface commands.

Flow control
The XBee 3 802.15.4 RF Module maintains buffers to collect serial and RF data that it receives. The
serial receive buffer collects incoming serial characters and holds them until the device can process
them. The serial transmit buffer collects the data it receives via the RF link until it transmits that data
out the serial port. The following figure shows the process of device buffers collecting received serial
data.
Use D6 (DIO6/RTS Configuration) and D7 (DIO7/CTS Configuration) to set flow control.

Clear-to-send (CTS) flow control
If you enable CTS flow control (D7 (DIO7/CTS Configuration)), when the serial receive buffer is more
than FT bytes full, the device de-asserts CTS (sets it high) to signal to the host device to stop sending

Serial communication Flow control

Digi XBee® 3 802.15.4 RF Module User Guide 84

serial data. The device reasserts CTS after the serial receive buffer has less than FT bytes in it. See FT
(Flow Control Threshold) to configure and read this threshold.

RTS flow control
If you set D6 (DIO6/RTS Configuration) to enable RTS flow control, the device does not send data in
the serial transmit buffer out the DOUT pin as long as RTS is de-asserted (set high). Do not de-assert
RTS for long periods of time or the serial transmit buffer will fill. If the device receives an RF data
packet and the serial transmit buffer does not have enough space for all of the data bytes, it discards
the entire RF data packet.
If the device sends data out the UART when RTS is de-asserted (set high) the device could send up to
five characters out the UART port after RTS is de-asserted.
Cases in which the DO buffer may become full, resulting in dropped RF packets:

1. If the RF data rate is set higher than the interface data rate of the device, the device may
receive data faster than it can send the data to the host. Even occasional transmissions from a
large number of devices can quickly accumulate and overflow the transmit buffer.

2. If the host does not allow the device to transmit data out from the serial transmit buffer due to
being held off by hardware flow control.

SPI operation

This section specifies how SPI is implemented on the device, what the SPI signals are, and how full
duplex operations work.

SPI communications 86
Full duplex operation 87
Low power operation 87
Select the SPI port 88
Force UART operation 89

Digi XBee® 3 802.15.4 RF Module User Guide 85

SPI operation SPI communications

Digi XBee® 3 802.15.4 RF Module User Guide 86

SPI communications
The XBee 3 802.15.4 RF Module supports SPI communications in slave mode. Slave mode receives the
clock signal and data from the master and returns data to the master. The following table shows the
signals that the SPI port uses on the device.
Refer to the XBee 3 Hardware Reference Guide for the pinout of your device.

Signal Direction Function

SPI_MOSI
(Master Out, Slave In)

Input Inputs serial data from the master

SPI_MISO (Master
In, Slave Out)

Output Outputs serial data to the master

SPI_SCLK
(Serial Clock)

Input Clocks data transfers on MOSI and MISO

SPI_SSEL
(Slave Select)

Input Enables serial communication with the slave

SPI_ATTN (Attention) Output Alerts the master that slave has data queued to send. The XBee
3 802.15.4 RF Module asserts this pin as soon as data is available
to send to the SPI master and it remains asserted until the SPI
master has clocked out all available data.

In this mode:

n SPI clock rates up to 5 MHz (burst) are possible.
n Data is most significant bit (MSB) first; bit 7 is the first bit of a byte sent over the interface.
n Frame Format mode 0 is used. This means CPOL= 0 (idle clock is low) and CPHA = 0 (data is

sampled on the clock’s leading edge).
n The SPI port only supports API Mode (AP = 1).

The following diagram shows the frame format mode 0 for SPI communications.

SPI mode is chip to chip communication. We do not supply a SPI communication interface on the XBee
development evaluation boards included in the development kit.

https://www.digi.com/resources/documentation/Digidocs/90001543/

SPI operation Full duplex operation

Digi XBee® 3 802.15.4 RF Module User Guide 87

Full duplex operation
When using SPI on the XBee 3 802.15.4 RF Module the device uses API operation without escaped
characters to packetize data. The device ignores the configuration of AP because SPI does not
operate in any other mode. SPI is a full duplex protocol, even when data is only available in one
direction. This means that whenever a device receives data, it also transmits, and that data is
normally invalid. Likewise, whenever a device transmits data, invalid data is probably received. To
determine whether or not received data is invalid, the firmware places the data in API packets.
SPI allows for valid data from the slave to begin before, at the same time, or after valid data begins
from the master. When the master sends data to the slave and the slave has valid data to send in the
middle of receiving data from the master, a full duplex operation occurs, where data is valid in both
directions for a period of time. Not only must the master and the slave both be able to keep up with
the full duplex operation, but both sides must honor the protocol.
The following figure illustrates the SPI interface while valid data is being sent in both directions.

Low power operation
Sleepmodes generally work the same on SPI as they do on UART. However, due to the addition of SPI
mode, there is an option of another sleep pin, as described below.
By default, Digi configures DIO8 (SLEEP_REQUEST) as a peripheral and during pin sleep it wakes the
device and puts it to sleep. This applies to both the UART and SPI serial interfaces.
If SLEEP_REQUEST is not configured as a peripheral and SPI_SSEL is configured as a peripheral, then
pin sleep is controlled by SPI_SSEL rather than by SLEEP_REQUEST. Asserting SPI_SSEL by driving it
low either wakes the device or keeps it awake. Negating SPI_SSEL by driving it high puts the device to
sleep.
Using SPI_SSEL to control sleep and to indicate that the SPI master has selected a particular slave
device has the advantage of requiring one less physical pin connection to implement pin sleep on SPI.
It has the disadvantage of putting the device to sleep whenever the SPI master negates SPI_SSEL
(meaning time is lost waiting for the device to wake), even if that was not the intent.
If the user has full control of SPI_SSEL so that it can control pin sleep, whether or not data needs to be
transmitted, then sharing the pin may be a good option in order to make the SLEEP_REQUEST pin
available for another purpose. Without control of SPI_SSEL while using it for sleep request, the device
may go to sleep at inopportune times.
If the device is one of multiple slaves on the SPI, then the device sleeps while the SPI master talks to
the other slave, but this is acceptable in most cases.
If you do not configure either pin as a peripheral, then the device stays awake, being unable to sleep in
SM1 mode.

SPI operation Select the SPI port

Digi XBee® 3 802.15.4 RF Module User Guide 88

Select the SPI port
To force SPI mode on through-hole devices, hold DOUT/DIO13 low while resetting the device until SPI_
ATTN asserts. This causes the device to disable the UART and go straight into SPI communication
mode. Once configuration is complete, the device queues a modem status frame to the SPI port,
which causes the SPI_ATTN line to assert. The host can use this to determine that the SPI port is
configured properly.
On surface-mount devices, forcing DOUT low at the time of reset has no effect. To use SPI mode on
the SMT modules, assert the SPI_SSEL low after reset and before any UART data is input.
Forcing DOUT low on TH devices forces the device to enable SPI support by setting the following
configuration values:

Through-hole Micro and Surface-mount SPI signal

D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) P9 (DIO19/SPI_ATTN Configuration) ATTN

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) P8 (DIO18/SPI_CLK Configuration) SCLK

D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) P7 (DIO17/SPI_SSEL Configuration) SSEL

D4 (DIO4/TH_SPI_MOSI Configuration) P6 (DIO16/SPI_MOSI Configuration) MOSI

P2 (DIO12/TH_SPI_MISO Configuration) P5 (DIO15/SPI_MISO Configuration) MISO

Note The ATTN signal is optional—you can still use SPI mode if you disable the SPI_ATTN pin (D1 on
through-hole or P9 on surface-mount devices).

As long as the host does not issue a WR command, these configuration values revert to previous
values after a power-on reset. If the host issues a WR command while in SPI mode, these same
parameters are written to flash, and after a reset the device continues to operate in SPI mode.
If the UART is disabled and the SPI is enabled in the written configuration, then the device comes up in
SPI mode without forcing it by holding DOUT low. If both the UART and the SPI are configured (P3
(DIO13/UART_DOUT Configuration) through P9 (DIO19/SPI_ATTN Configuration) are set to 1) at the
time of reset, then output goes to the UART until the host sends the first input to the SPI interface. As
soon as the first input comes on the SPI port, then all subsequent output goes to the SPI port and the
UART is disabled.
Once you select a serial port (UART or SPI), all subsequent output goes to that port, even if you apply a
new configuration. Once the SPI interface is made active, the only way to switch the selected serial
port back to UART is to reset the device.
When the master asserts the slave select (SPI_SSEL) signal, SPI transmit data is driven to the output
pin SPI_MISO, and SPI data is received from the input pin SPI_MOSI. The SPI_SSEL pin has to be
asserted to enable the transmit serializer to drive data to the output signal SPI_MISO. A rising edge
on SPI_SSEL causes the SPI_MISO line to be tri-stated such that another slave device can drive it, if so
desired.
If the output buffer is empty, the SPI serializer transmits the last valid bit repeatedly, which may be
either high or low. Otherwise, the device formats all output in API mode 1 format, as described in
Operate in API mode. The attached host is expected to ignore all data that is not part of a formatted
API frame.

SPI operation Force UART operation

Digi XBee® 3 802.15.4 RF Module User Guide 89

Force UART operation
If you configure a device with only the SPI enabled and no SPI master is available to access the SPI
slave port, you can recover the device to UART operation by holding DIN / CONFIG low at reset time.
DIN/CONFIG forces a default configuration on the UART at 9600 baud and brings up the device in
Commandmode on the UART port. You can then send the appropriate commands to the device to
configure it for UART operation. If you write those parameters, the device comes up with the UART
enabled on the next reset.

I/O support

The following topics describe analog and digital I/O line support, line passing and output control.

Legacy support 91
Mixed network considerations 92
Digital I/O support 92
Analog I/O support 93
Monitor I/O lines 94
I/O sample data format 94
API frame support 96
On-demand sampling 97
Periodic I/O sampling 100
Digital I/O change detection 102
I/O line passing 103
Digital line passing 103
Output sample data 105
Output control 105
I/O behavior during sleep 105

Digi XBee® 3 802.15.4 RF Module User Guide 90

I/O support Legacy support

Digi XBee® 3 802.15.4 RF Module User Guide 91

Legacy support
By default, the XBee 3 802.15.4 RF Module is configured to operate in a legacy configuration. This
provides network and application compatibility with XBee S1 802.15.4 and XBee S2C
802.15.4 devices. AO (API Output Options) is used to determine:

n Which Digital I/O lines are sampled
n What sample frame type is used for outgoing transmissions

AO has no affect on received I/O sample data, but will determine the frame type emitted for received
serial data.
Previous 802.15.4 firmwares on the XBee S1 and XBee S2C hardware had a limited set of I/O lines
available. Valid DIO lines on these devices are from D0 through D8; I/O samples are transmitted over
the air using a standard I/O sample packet using a Legacy data format. These platforms do not have
an AO command and always output sample data in a legacy format if possible.
For the XBee 3 platform, digital I/O has been enhanced to be in parity with DigiMesh and Zigbee. You
can now enable up to fourteen digital inputs for sampling: D0 through P4 as long as AO is not set to 2.
In order to support these additional I/O lines, an enhanced I/O sample packet is sent over the air,
which is not compatible with the S1 or S2C.
By default, the XBee 3 802.15.4 RF Module is configured to operate in a legacy configuration
with AO set to 2. This allows you to sample D0 through D8. If you configure D9 through P4 as digital
I/O, they are not sampled unless you set AO to 0 or 1.
For new designs, we recommend setting AO to 0 or 1 (Operate in API mode), which allows you to use
additional I/O lines for sampling and easily allows you to switch to Zigbee or DigiMesh, as the API and
I/O functionality are identical.
This table illustrates the various configuration combinations that are possible and the expected
output:

Source

Source
AO
value Destination

Destination
AO value

Data
format API frame on receiver

XBee 3 0 or 1 XBee 3 0 or 1 Enhanced I/O Sample Indicator - 0x92

XBee 3 0 or 1 XBee 3 2 Enhanced I/O Sample Indicator - 0x92

XBee 3 0 or 1 S1 or S2C N/A N/A Legacy devices are unable to interpret
the additional sample data and will
discard the received packet.

XBee 3 2 XBee 3 0 or 1 Legacy 64-bit I/O Sample Indicator - 0x82 / 16-
bit I/O Sample Indicator - 0x83

XBee 3 2 S1 or S2C N/A Legacy 64-bit I/O Sample Indicator - 0x82 / 16-
bit I/O Sample Indicator - 0x83

S1 or
S2C

N/A XBee 3 0 or 1 Legacy 64-bit I/O Sample Indicator - 0x82 / 16-
bit I/O Sample Indicator - 0x83

S1 or
S2C

N/A XBee 3 2 Legacy 64-bit I/O Sample Indicator - 0x82 / 16-
bit I/O Sample Indicator - 0x83

Refer to I/O sample data format for more information on the format of the incoming I/O sample data.

https://www.digi.com/support/productdetail?pid=3257
https://www.digi.com/products/xbee-rf-solutions/2-4-ghz-modules/xbee-802-15-4
https://www.digi.com/products/xbee-rf-solutions/2-4-ghz-modules/xbee-802-15-4

I/O support Mixed network considerations

Digi XBee® 3 802.15.4 RF Module User Guide 92

Mixed network considerations
If you use a mixed network of XBee 3 and legacy S1 or S2C devices, you must set AO to 2 in order to
transmit sample data that is compatible with these devices.
Regardless of the AO setting, if an XBee 3 802.15.4 RF Module receives an I/O sample packet from an
S1 or S2C device, it always outputs the legacy data format.

Digital I/O support
AO (API Output Options) determines the I/O lines available for sampling. By default, AO is configured
to be compatible with legacy devices.

n Configure AO to 0 or 1 to make digital I/O available on lines DIO0 through DIO14 (D0 -
D9 and P0 - P4).

n Configure AO to 2 to make digital I/O available on lines DIO0 through DIO8 (D0 - D8). This
provides compatibility with S1 and S2C devices and is the default configuration.

See Legacy support for more information.
Digital sampling is enabled on these pins if configured as 3, 4, or 5 with the following meanings:

n 3 is digital input.
l Use PR (Pull-up/Down Resistor Enable) to enable internal pull up/down resistors for each

digital input. Use PD (Pull Up/Down Direction) to determine the direction of the internal pull
up/down resistor. All disabled and digital input pins are pulled up by default.

n 4 is digital output low.
n 5 is digital output high.

Function
when AO = 0
or 1

Legacy
Function
when AO = 2

Micro
Pin

SMT
Pin

TH
Pin AT Command

DIO0 DIO0 31 33 20 D0 (DIO0/ADC0/Commissioning
Configuration)

DIO1 DIO1 30 32 19 D1 (DIO1/ADC1/TH_SPI_ATTN
Configuration)

DIO2 DIO2 29 31 18 D2 (DIO2/ADC2/TH_SPI_CLK
Configuration)

DIO3 DIO3 28 30 17 D3 (DIO3/ADC3/TH_SPI_SSEL
Configuration)

DIO4 DIO4 23 24 11 D4 (DIO4/TH_SPI_MOSI Configuration)

DIO5 DIO5 26 28 15 D5 (DIO5/Associate Configuration)

DIO6 DIO6 27 29 16 D6 (DIO6/RTS Configuration)

DIO7 DIO7 24 25 12 D7 (DIO7/CTS Configuration)

I/O support Analog I/O support

Digi XBee® 3 802.15.4 RF Module User Guide 93

Function
when AO = 0
or 1

Legacy
Function
when AO = 2

Micro
Pin

SMT
Pin

TH
Pin AT Command

DIO8 DIO8 9 10 9 D8 (DIO8/DTR/SLP_Request
Configuration)

DIO9 N/A 25 26 13 D9 (DIO9/ON_SLEEP Configuration)

DIO10 N/A 7 7 6 P0 (DIO10/RSSI/PWM0 Configuration)

DIO11 N/A 8 8 7 P1 (DIO11/PWM1 Configuration)

DIO12 N/A 5 5 4 P2 (DIO12/TH_SPI_MISO
Configuration)

DIO13 N/A 3 3 2 P3 (DIO13/UART_DOUT Configuration)

DIO14 N/A 4 4 3 P4 (DIO14/UART_DIN Configuration)

I/O sampling is not available for pins P5 through P9. See the XBee 3 Hardware Reference Manual for full
pinouts and functionality.

Analog I/O support
Analog input is available on D0 through D3. Configure these pins to 2 (ADC) to enable analog sampling.
PWM output is available on P0 and P1, which can be used for Analog line passing. Use M0 (PWM0 Duty
Cycle) and M1 (PWM1 Duty Cycle) to set a fixed PWM level.

Function Micro Pin SMT Pin TH Pin AT Command

ADC0 31 33 20 D0 (DIO0/ADC0/Commissioning Configuration)

ADC1 30 32 19 D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)

ADC2 29 31 18 D2 (DIO2/ADC2/TH_SPI_CLK Configuration)

ADC3 28 30 17 D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)

PWM0 7 7 6 P0 (DIO10/RSSI/PWM0 Configuration)

PWM1 8 8 7 P1 (DIO11/PWM1 Configuration)

AV (Analog Voltage Reference) specifies the analog reference voltage used for the 10-bit ADCs. Analog
sample data is represented as a 2-byte value. For a 10-bit ADC, the acceptable range is from 0x0000
to 0x03FF. To convert this value to a useful voltage level, apply the following formula:

ADC / 1023 (vREF) = Voltage

Note ADCs sampled through MicroPython will have 12-bit resolution.

Example
An ADC value received is 0x01AE; to convert this into a voltage the hexadecimal value is first converted
to decimal (0x01AE = 430). Using the default AV reference of 1.25 V, apply the formula as follows:

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

I/O support Monitor I/O lines

Digi XBee® 3 802.15.4 RF Module User Guide 94

430 / 1023 (1.25 V) = 525 mV

Monitor I/O lines
You can monitor pins you configure as digital input, digital output, or analog input and generate I/O
sample data. If you do not define inputs or outputs, no sample data is generated.
Typically, I/O samples are generated by configuring the device to sample I/O pins periodically (based
on a timer) or when a change is detected on one or more digital pins. These samples are always sent
over the air to the destination address specified with DH (Destination Address High) and DL
(Destination Address Low).
You can also gather sample data using on-demand sampling, which allows you to interrogate the state
of the device's I/O pins by issuing an AT command. You can do this on either a local or remote
device via an AT command request.
The three methods to generate sample data are:

n Periodic sample (IR (Sample Rate))
l Periodic sampling based on a timer
l Samples are taken immediately upon wake (excluding pin sleep)
l Sample data is sent to DH+DL destination address
l Can be used with line passing
l Requires API mode on receiver

n Change detect (IC (DIO Change Detect))
l Samples are generated when the state of specified digital input pin(s) change
l Sample data is sent to DH+DL destination address
l Can be used with line passing
l Requires API mode on receiver

n On-demand sample (IS (I/O Sample))
l Immediately query the device’s I/O lines
l Can be issued locally in Command Mode
l Can be issued locally or remotely in API mode

These methods are not mutually exclusive and you can use them in combination with each other.

I/O sample data format
AO determines the format of outgoing sample data.
By default, AO is configured to be compatible with legacy devices and generates samples using a
legacy data format.

Legacy data format
If sample data is generated from an S1 or S2C 802.15.4 XBee or an XBee 3 802.15.4 that has AO set to
2, the format of the sample data will be represented as a series of bytes in the following format which
is compatible with the S1 802.15.4 and S2C 802.15.4 devices:

I/O support I/O sample data format

Digi XBee® 3 802.15.4 RF Module User Guide 95

Bytes Name Description

1 Sample
sets

Number of sample sets. This is determined by IT (Samples before TX) on the
source node.

2 Digital
and
analog
channel
mask

Indicates which digital I/O and ADC lines have sampling enabled. Each bit
corresponds to one digital I/O or ADC line on the device.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = ADC0
bit 10 = ADC1
bit 11 = ADC2
bit 12 = ADC3
bit 13 = Reserved
bit 14 = Reserved
bit 15 = Reserved
Example: a channel mask of 0x063C means ADC0, ADC1, DIO2, DIO3, and DIO5
are configured as digital inputs or outputs.

2 Digital
data set

Each bit in the digital data set corresponds to a digital bit in the channel mask
and indicates the state of the digital pin, whether high (1) or low (0).
If the digital portion of the channel mask is 0, then these two bytes are omitted
as no digital I/O lines are enabled.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = N/A
bit 10 = N/A
bit 11 = N/A
bit 12 = N/A
bit 13 = N/A
bit 14 = N/A
bit 15 = N/A

2 Analog
data set
(multiple)

Each enabled ADC line in the analog portion of the channel mask has a separate
2-byte value based on the number of ADC inputs on the originating device. The
data starts with AD0 and continues sequentially for each enabled analog input
channel up to AD3.
If the analog portion of the channel mask is 0, then no analog sample bytes are
included.

I/O support API frame support

Digi XBee® 3 802.15.4 RF Module User Guide 96

Enhanced data format
If you set AO to 0 or 1 on the source node, then the data format is represented as a series of bytes in
the following format which matches the DigiMesh and Zigbee firmwares:

Bytes Name Description

1 Sample
sets

Number of sample sets. There is always one sample set per frame.

2 Digital
channel
mask

Indicates which digital I/O lines have sampling enabled. Each bit corresponds to
one digital I/O line on the device.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = DIO9
bit 10 = DIO10
bit 11 = DIO11
bit 12 = DIO12
bit 13 = DIO13
bit 14 = DIO14
bit 15 = N/A
Example: a digital channel mask of 0x002F means DIO0, 1, 2, 3 and 5 are
configured as digital inputs or outputs.

1 Analog
channel
mask

Indicates which lines have analog inputs enabled for sampling. Each bit in the
analog channel mask corresponds to one analog input channel. If a bit is set,
then a corresponding 2-byte analog data set is included.
bit 0 = AD0/DIO0
bit 1 = AD1/DIO1
bit 2 = AD2/DIO2
bit 3 = AD3/DIO3

2 Digital
data set

Each bit in the digital data set corresponds to a bit in the digital channel mask
and indicates the digital state of the pin, whether high (1) or low (0).
If the digital channel mask is 0x0000, then these two bytes are omitted as no
digital I/O lines are enabled.

2 Analog
data set
(multiple)

Each enabled ADC line in the analog channel mask will have a separate 2-byte
value based on the number of ADC inputs on the originating device. The data
starts with AD0 and continues sequentially for each enabled analog input
channel up to AD3.
If the analog channel mask is 0x00, then no analog sample bytes is included.

API frame support
I/O samples generated using Periodic I/O sampling (IR) and Digital I/O change detection (IC) are
transmitted to the destination address specified by DH and DL. In order to display the sample data,

I/O support On-demand sampling

Digi XBee® 3 802.15.4 RF Module User Guide 97

the receiver must be operating in API mode (AP = 1 or 2). The sample data is represented as an I/O
sample API frame.
There are three types of I/O sample frames that are supported by the XBee 3 802.15.4 RF Module:

n 0x92 - Enhanced I/O sample frame
n 0x82 - Legacy 64-bit I/O sample frame
n 0x83 - Legacy 16-bit I/O sample frame

If AO = 0 or 1 on the source node, additional I/O lines can be sampled by the source and a 0x92 frame
is generated on the destination. In this configuration, the receiver must be an XBee 3, as the XBee S1
and S2C 802.15.4 devices will be unable to interpret the additional sample data.
See I/O Sample Indicator - 0x92 for more information on the frame's format and an example.
If the source node is an XBee S1 or S2C device or an XBee 3 with AO set to 2, the destination node
generates either a 0x82 or 0x83 frame depending on whether the source node is operating in a 16-bit
or 64-bit configuration. See Addressing modes for more information.
See Legacy support for more information on what configuration options generate the various I/O
frames.

On-demand sampling
You can use IS (I/O Sample) to query the current state of all digital I/O and ADC lines on the device and
return the sample data as an AT command response. If no inputs or outputs are defined, the
command returns an ERROR.
On-demand sampling can be useful when performing initial deployment, as you can send IS locally to
verify that the device and connected sensors are correctly configured. The format of the sample data
matches what is periodically sent using other sampling methods. You can also send IS remotely using
a remote AT command. When sent remotely from a gateway or server to each sensor node on the
network, on-demand sampling can improve battery life and network performance as the remote node
transmits sample data only when requested instead of continuously.
If you send IS using Commandmode, then the device returns a carriage return delimited list
containing the I/O sample data. If IS is sent either locally or remotely via an API frame, the I/O sample
data is presented as the parameter value in the AT command response frame (Description or Remote
AT Command Response- 0x97).

Example: Command mode
An IS command sent in Commandmode returns the following sample data:
This example uses the enhanced I/O data format, if you use the legacy format (AO = 2 or data is
received from an S1 or S2C device) then refer to the Legacy data format for information on how this
data is structured.

Output Description

01 One sample set

0C0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

I/O support On-demand sampling

Digi XBee® 3 802.15.4 RF Module User Guide 98

Output Description

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

0408 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and DIO11 are low

03D0 Analog sample data for AD0

0124 Analog sample data for AD1

Example: Local AT command in API mode
The IS command sent to a local device in API mode would use a Local AT Command Request -
0x08 or Queue Local AT Command Request - 0x09 frame:

7E 00 04 08 53 49 53 08
The device responds with a Description that contains the sample data:

7E 00 0F 88 53 49 53 00 01 0C 0C 03 04 08 03 D0 01 24 68
This example uses the enhanced I/O data format, if you use the legacy format (AO = 2 or data is
received from an S1 or S2C device) then see the Legacy data format for information on how this data
is structured.

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 0F Length Length of the packet

88 Frame type AT Command response frame

53 Frame ID This ID corresponds to the Frame ID of the 0x08 request

49 53 AT Command Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

I/O support On-demand sampling

Digi XBee® 3 802.15.4 RF Module User Guide 99

Output Field Description

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and
DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

68 Checksum Can safely be discarded on received frames

Example: Remote AT command in API mode
The IS command sent to a remote device with an address of 0013A200 12345678 uses a Remote AT
Command Request - 0x17:

7E 00 0F 17 87 00 13 A2 00 12 34 56 78 FF FE 00 49 53 FF
The sample data from the device is returned in a Remote AT Command Response- 0x97 frame with
the sample data as the parameter value:

7E 00 19 97 87 00 13 A2 00 12 34 56 78 00 00 49 53 00 01 0C 0C 03 04 08 03 FF 03 FF 50
This example uses the enhanced I/O data format, if you use the legacy format (AO = 2 or data is
received from an S1 or S2C device) then see Legacy data format for information on how this data is
structured.

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 19 Length Length of the packet

97 Frame type Remote AT Command response frame

87 Frame ID This ID corresponds to the Frame ID of the 0x17 request

0013A200
12345678

64-bit
source

The 64-bit address of the node that responded to the request

0000 16-bit
source

The 16-bit address of the node that responded to the request

49 53 AT
Command

Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

I/O support Periodic I/O sampling

Digi XBee® 3 802.15.4 RF Module User Guide 100

Output Field Description

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2
and DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

50 Checksum Can safely be discarded on received frames

Periodic I/O sampling
Periodic sampling allows a device to take an I/O sample and transmit it to a remote device at a
periodic rate.

Source
Use IR (Sample Rate) to set the periodic sample rate for enabled I/O lines.

n To disable periodic sampling, set IR to 0.
n For all other IR values, the device samples data when IR milliseconds elapse and transmits the

sampled data to the destination address.

The DH (Destination Address High) and DL (Destination Address Low) commands determine the
destination address of the I/O samples. You must configure at least one pin as a digital I/O or ADC
input on the sending node to generate sample data.

Destination
If the receiving device is operating in API operating mode the I/O sample data format is emitted out of
the serial port. Devices that are in Transparent operating mode discard the I/O data samples they
receive unless you enable line passing.

I/O sampling upon wake
By default, a device that is configured for sleep (SM > 0) that has at least one digital I/O or ADC
enabled transmits an I/O sample upon wake regardless of how IR is configured. Sampling upon wake
can be disabled by clearing bit 1 of the SO. For more information about setting sleepmodes, see Sleep
modes and SO (Sleep Options).

Multiple samples per packet
IT (Samples before TX) specifies how many I/O samples can be transmitted in a single OTA packet. Any
single-byte value (0 - 0xFF) is accepted for input. However, the value is adjusted downward based on

I/O support Periodic I/O sampling

Digi XBee® 3 802.15.4 RF Module User Guide 101

how many I/O samples can fit into a maximum size packet; see Maximum payload. A query of IT after
changes are applied tells how many I/O samples will actually be gathered.
Since MM (MAC Mode) must be 0 or 3 to send I/O samples, the maximum payload in the best of
conditions (short source address, short destination address, and no encryption) is 114 bytes. Seven of
those bytes are used by the command header and the I/O header, leaving 107 bytes for I/O samples.
The minimum I/O sample is 2 bytes. Therefore the maximum possible usable value for IT is 53 (or
0x35).
Only legacy I/O frames allow for gathering multiple samples. If you set AO to 0 or 1, then IT is not
applicable and only one sample can be gathered per frame.

Example: Remote AT command in API mode
A device is configured with the following settings:

n D0 and D1 are set to ADC (2)
n D3 is configured as a digital input (3)
n AO is set to 2, so legacy frames are generated
n IT is configured to 3, so that three samples are gathered per transmission

On the destination node, the following frame is emitted:
7E 00 1A 83 12 34 26 02 03 06 04 00 04 01 28 03 12 00 00 01 58 02 FE 00 04 01 2A 03 A0 94

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 1A Length Length of the packet

83 Frame
type

Legacy 16-bit I/O Sample

12 34 16-bit
Source
Address

The source address of the device that sent the I/O sample

26 RSSI The 64-bit address of the node that responded to the request

02

03 Sample
sets

The number of samples that are included in this frame

06 04 Channel
mask

Mask which indicates which digital and analog lines are enabled. Even though
multiple samples are being gathered, there will only ever be one channel
mask per frame.
(0x0604 = 0000 0110 0000 0100b = ADC0, ADC1, DIO3)

https://www.digi.com/resources/documentation/Digidocs/90001500/Reference/r_max_payload.htm

I/O support Digital I/O change detection

Digi XBee® 3 802.15.4 RF Module User Guide 102

Output Field Description

00 04 Sample
set 1

The first set of digital sample data that corresponds with the digital portion of
the channel mask
0x0004 = 0000 0000 0000 0100b = DIO3 is high

01 28 Analog sample data for AD0

03 12 Analog sample data for AD1

00 00 Sample
set 2

The second set of digital sample data
0x0004 = 0000 0000 0000 0000b = DIO3 is low

01 58 Second set of analog sample data for AD0

02 FE Second set of analog sample data for AD1

00 04 Sample
set 1

The third set of digital sample data
0x0004 = 0000 0000 0000 0100b = DIO3 is high

01 2A Third set of analog sample data for AD0

03 A0 Third set of analog sample data for AD1

94 Checksum Can safely be discarded on received frames

Digital I/O change detection
You can configure devices to transmit a data sample immediately whenever a monitored digital I/O
pin changes state. IC (DIO Change Detect) is a bitmask that determines which digital I/O lines to
monitor for a state change. If you set one or more bits in IC, the device transmits an I/O sample as
soon it observes a state change on the monitored digital I/O line(s) using edge detection.
Change detection is only applicable to digital I/O pins that are configured as digital input (3) or digital
output (4 or 5).
The figure below shows how I/O change detection can work in combination with Periodic I/O
sampling to improve sampling accuracy. In the figure, the gray dashed lines with a dot on top
represent samples taken from the monitored DIO line. The top graph shows only periodic IR samples,
the bottom graph shows a combination of IR periodic samples and IC detected changes. In the top
graph, the humps indicate that the sample was not taken at that exact moment and needed to wait
for the next IR sample period.

I/O support I/O line passing

Digi XBee® 3 802.15.4 RF Module User Guide 103

Note Use caution when combining change detect sampling with sleepmodes. IC only causes a sample
to be generated if a state change occurs during a wake period. If the device is sleeping when the
digital transition occurs, then no change is detected and an I/O sample is not generated.
Use periodic sampling with IR in conjunction with IC in this instance, since IR generates an I/O sample
upon wakeup and ensures that the change is properly observed.

If you enable multiple samples by setting IT > 1, any change detect that occurs causes all collected
periodic samples to be sent immediately, then a separate IC sample is sent.

I/O line passing
Line passing allows you to affect the output pins of one device by sampling the I/O pins of another. To
support line passing, you must configure a device to generate I/O sample data using periodic sampling
(IR (Sample Rate)) and/or change detection (IC (DIO Change Detect)).
On the device that receives I/O samples, enable line passing setting IA (I/O Input Address) with the
address of the device that has the appropriate inputs enabled. This effectively binds the outputs to a
particular device’s input. This does not affect the ability of the device to receive I/O line data from
other devices—only its ability to update enabled outputs. Set IA to 0xFFFF (broadcast address) to
affect the output using input data from any device on the network.

Digital line passing
Digital I/O lines are mapped in pairs; pins configured as digital input on the transmitting device affect
the corresponding digital output pin on the receiving device. For example, a device that samples D5 as
an input (3) only affects D5 on the receiver if D5 is configured as an output (4 or 5).
Each digital pin has an associated timeout value. When an I/O sample is received that affects a digital
output pin, the pin returns to its configured state after the timeout period expires. For
pins D0 through D9, the associated timeout commands are T0 (D0 Timeout Timer) through T9 (D9
Output Timer). For pins P0 through P4, the associated timeout commands are Q0 (P0 Output
Timer) through Q2 (P2 Output Timer).
Digital line passing is only available on pins D0 through P3. You cannot use UART and SPI pins for line
passing.

Example: Digital line passing
A sampling XBee 3 802.15.4 RF Module is configured with the following settings:

AT command Parameter value

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 3 (digital input)

IR (Sample Rate) 0x7D0 (2 seconds)

DH (Destination Address High) 0013A200

DL (Destination Address Low) 12345678

Every two seconds, an I/O sample is generated and sent to the address specified by DH and DL. The
receiver is configured with the following settings:

I/O support Digital line passing

Digi XBee® 3 802.15.4 RF Module User Guide 104

AT command Parameter value

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 5 (digital output low)

T2 (D2 Output Timeout Timer) 0x64 (10 seconds)

IA (I/O Input Address) 00103A20012345678

When this device receives an incoming I/O sample, if the source address matches the one set by IA,
the device sets the output of D2 to match the input of D2 of the receiver. This output level holds for
ten seconds before the pin returns to a digital output low state.

Analog line passing
Similar to digital line passing, analog line passing pairs the Analog I/O support of one device to a PWM
output of another. There are two PWM output pins that can simulate the voltage measured by the
ADC inputs. Be aware that ADC inputs are on different pins than the corresponding PWM outputs: AD0
corresponds to PWM0, and AD1 corresponds to PWM1. See Analog I/O support for the pinouts.
You can set the analog line passing timeout value with PT (PWM Output Timeout), which affects both
PWM output pins. You can explicitly set a PWM output level using the M0 (PWM0 Duty Cycle) and M1
(PWM1 Duty Cycle) commands, when an I/O sample is received that affects a PWM output pin, it
returns to its configured state after the PT timeout period expires.

Example: Analog line passing
A sampling device is configured with the following settings:

AT command Parameter value

2 (ADC input)

IR (Sample Rate) 0x7D0 (2 seconds)

DH (Destination Address High) 0013A200

DL (Destination Address Low) 12345678

Every two seconds, an I/O sample frame is generated and sent to the address specified by DH and DL.
The receiver is configured with the following settings:

AT command Parameter value

P0 2 (PWM output)

M0 0

PT 0x12C (30 seconds)

IA 0013A20087654321

When this device receives an incoming I/O sample, if the source address matches the one set by IA,
the device sets the PWM output of P0 to match the ADC input of D0 of the receiver. This output level
holds for thirty seconds before the pin returns to a digital output low state.

I/O support Output sample data

Digi XBee® 3 802.15.4 RF Module User Guide 105

Output sample data
If a device receives an I/O sample whose address matches that set by IA (I/O Input Address), it
triggers line passing. Line passing operates whether the receiving device is operating in API or
Transparent mode.
By default, if the receiver is configured for API mode, it outputs the I/O sample frame in addition to
affecting output pins. You can suppress the I/O sample frame output by setting IU (I/O Output
Enable) to 0. This only suppresses I/O samples that trigger line passing, a sample generated from a
device whose address does not match the IA address is sent regardless of IU.

Output control
IO (Digital Output Level) controls the output levels of D0 (DIO0/ADC0/Commissioning Configuration)
through D7 (DIO7/CTS Configuration) that are configured as output pins (either 4 or 5). These values
override the configured output levels of the pins until they are changed again (the pins do not
automatically revert to their configured values after a timeout.)
You can use IO to trigger a sample on change detect.

I/O behavior during sleep
When the device sleeps (SM ! = 0) the I/O lines are optimized for a minimal sleep current.

Digital I/O lines
Digital I/O lines set as digital output high or low maintain those values during sleep. Disabled or input
pins continue to be controlled by the PR/PD settings. Peripheral pins (with the exception of CTS) are
set low during sleep and SPI pins are set high. Peripheral and SPI pins resume normal operation upon
wake.
Digital I/O lines that have been set using I/O line passing hold their values during sleep, however the
digital timeout timer (T0 through T9, andQ0 through Q2) are suspended during sleep and resume
upon wake.

Analog and PWM I/O Lines
Lines configured as analog inputs or PWM output are not affected during sleep. PWM lines are shut
down (set low) during sleep and resume normal operation upon wake.
PWM output pins set by analog line passing are shutdown during sleep and revert to their preset
values (M0 andM1) on wake. This happens regardless of whether the timeout has expired or not.

Networking

Networking terms 107
MAC Mode configuration 107
Clear Channel Assessment (CCA) 108
Retries configuration 108
Transmit status based on MAC mode and XBee retries configurations 109
Addressing 110
Peer-to-peer networks 111
Master/slave networks 111
Direct and indirect transmission 114
Encryption 116
Maximum payload 117

Digi XBee® 3 802.15.4 RF Module User Guide 106

Networking Networking terms

Digi XBee® 3 802.15.4 RF Module User Guide 107

Networking terms
The following table describes some common terms we use when discussing networks.

Term Definition

Association Establishing membership between end devices and a coordinator.

Coordinator A full-function device (FFD) that allows end devices to associate to it and can queue
and deliver indirect messages.

End device When in the same network as a coordinator. Devices that rely on a coordinator for
synchronization and can be put into states of sleep for low-power applications.

PAN Personal Area Network. A data communication network that includes one or more
end devices and optionally a coordinator.

MAC Mode configuration
Medium Access Control (MAC) Mode configures two functions:

1. Enables or disables the use of a Digi header in the 802.15.4 RF packet.
When the Digi header is enabled (MM = 0 or 3), duplicate packet detection is enabled as well as
certain AT commands.
MAC Modes 1 and 2 do not include a Digi header, which disables many features of the device. All
data is strictly pass-through. These modes are intended to provide some compatibility with
third-party 802.15.4 devices.

2. Enables or disables MAC acknowledgment request for unicast packets.
When MAC ACK is enabled (MM = 0 or 2), transmitting devices send packets with an ACK
request so receiving devices send an ACK back (acknowledgment of RF packet reception) to
the transmitter. If the transmitting device does not receive the ACK, it re-sends the packet
up to three times or until the ACK is received.
MAC Modes 1 and 3 disable MAC acknowledgment. Transmitting devices send packets without
an ACK request so receiving devices do not send an ACK back to the transmitter.
Broadcast messages are always sent with the MAC ACK request disabled.

The following table summarizes the functionality.

Mode Digi header MAC ACK

0 (default) X X

1

2 X

3 X

The default value for the MM configuration parameter is 0 which enables both the Digi header and
MAC acknowledgment.

Networking Clear Channel Assessment (CCA)

Digi XBee® 3 802.15.4 RF Module User Guide 108

Clear Channel Assessment (CCA)
Prior to transmitting a packet, the device performs a CCA (Clear Channel Assessment) on the channel
to determine if the channel is available for transmission. The detected energy on the channel is
compared with the CA (Clear Channel Assessment) parameter value. If the detected energy exceeds
the CA parameter value, the device does not transmit the packet.
Also, the device inserts a delay before a transmission takes place. You can set this delay using the RN
(Backoff Exponent) parameter. If you set RN to 0, there is no delay before the first CCA is performed.
The RN parameter value is the equivalent of the “minBE” parameter in the 802.15.4 specification. The
transmit sequence follows the 802.15.4 specification.
On a CCA failure, the device attempts to re-send the packet up to three additional times, meaning a
total of four attempts.

CCA operations
CCA is a method of collision avoidance that is implemented by detecting the energy level on the
transmission channel before starting the transmission. The CCA threshold (defined by the CA
parameter) defines the energy level that it takes to block a transmission attempt. For example, if CCA
is set to the default value of 0x32 (which is interpreted as -50 dBm) then energy detected above the -
50 dBm level (for example -45 dBm) temporarily blocks a transmission attempt. But if the energy level
is less than that (for example -70 dBm), the transmission is not blocked. The intent of this feature is to
prevent simultaneous transmissions on the same channel.
You can disable CCA by setting CA to 0. Disabling CCA can improve latency in noisy environments, but it
can also interfere with other devices that are operating on the same channel. Setting or changing CA
to a non-zero value only takes effect upon boot. If you adjust the CA value, ensure that you write the
setting to flash with WR (Write) and restart with an FR (Software Reset).
In the event that the energy level exceeds the threshold, the transmission is blocked for a random
number of backoff periods. The number of backoff periods is defined by the following formula: random
(2^n - 1), where n is defined by the RN parameter and increments after each CCA failure. When RN is
set to its default value of 0, then 2^n -1 is 0, preventing any delay before the first energy detection on
a new frame. However, n increments after each CCA failure, giving a greater range for the number of
backoff periods between each energy detection cycle.
In the event that six energy detection cycles occur and each one detects too much energy, the
application tries again 1 to 48 ms later. After the application retries are exhausted, then the
transmission fails with a CCA error.
Whenever the MAC code reports a CCA failure, meaning that it performed six energy detection cycles
with exponential random back-offs, and each one failed, the EC parameter is incremented. The EC
parameter can be read at any time to find out how noisy the operating channel is. It continues to
increment until it reaches its maximum value of 0xFFFF. To get new statistics, you can set EC back to
0.

Retries configuration
If you are operating in a MAC Mode that enables MAC ACK (MM=0 or MM=2), each RF packet will be
sent with up to five 802.15.4 MAC-Layer retries, meaning six transmission attempts are performed.
This is enabled by default and provides a minimal amount of reliability to unicast transmissions.
If you are operating in a MAC Mode that enables the Digi header (MM=0 or MM=3), then you can
optionally include Application-Layer retries using the RR (XBee Retries) command. Each Application-
Layer retry attempt to send the packet using five MAC-Layer retries. This can greatly increase the
reliability of unicast transmissions with a risk of reduced throughput.

Networking Transmit status based on MACmode and XBee retries configurations

Digi XBee® 3 802.15.4 RF Module User Guide 109

Transmit status based on MAC mode and XBee retries
configurations

When working in API mode, a transmit request frame sent by the user is always answered with a
transmit status frame sent by the device, if the frame ID is non-zero. A Frame ID of 0 specifies that the
packet should be sent without an acknowledgment.
The following tables report the expected transmit status for unicast transmissions and the maximum
number of MAC and application retries the device attempts.
The tables also report the transmit status reported when the device detects energy above the CCA
threshold (when a CCA failure happens).
The following table applies in either of these cases:

l Digi header is disabled.
l Digi header is enabled and XBee Retries (RR parameter) is equal to 0 (default configuration).

Mac ACK
Config

Destination reachable Destination unreachable
CCA failure
happened

TX status

Retries

TX status

Retries
TX
status

Retries

MAC App MAC App MAC App

Enabled 00
(Success)

up to
5

0 01 (No
acknowledgment
received)

5 0 02 (CCA
failure)

5 0

Disabled 00
(Success)

0 0 00 (Success) 0 0 02 (CCA
failure)

5 0

The following table applies when:

l Digi header is enabled and XBee Retries (RR parameter) > 0.

Mac ACK
Config

Destination reachable
Destination
unreachable CCA failure happened

TX status

Retries

TX status

Retries
TX
status

Retries

MAC App MAC App MAC App

Enabled 00
(Success)

up to 5
per
app
retry

up to
RR
value

21
(Network
ACK
Failure)

5 RR
value

02
(CCA
failure)

5 RR value

Disabled 00
(Success)

0 up to
RR
value

21
(Network
ACK
Failure)

0 RR
value

02
(CCA
failure)

5 RR value

Networking Addressing

Digi XBee® 3 802.15.4 RF Module User Guide 110

Addressing
Every RF data packet sent over-the-air contains a Source Address and Destination Address field in its
header. The XBee 3 802.15.4 RF Module conforms to the 802.15.4 specification and supports both
short 16-bit addresses and long 64-bit addresses. A unique 64-bit IEEE source address is assigned at
the factory and can be read with the SL (Serial Number Low) and SH (Serial Number High) commands.
A device uses its unique 64-bit address as its Source Address if its MY (16-bit Source Address) value is
0xFFFF or 0xFFFE. Since the default value for MY is 0, devices use short source addressing by default.

Send packets to a specific device in Transparent API mode
To send a packet to a specific device using 64-bit addressing:

n Set the Destination Address (DL + DH) of the sender to match the Source Address (SL + SH) of
the intended destination device.

To send a packet to a specific device using 16-bit addressing:

1. Set the DL parameter to equal the MY parameter of the intended destination device.
2. Set the DH parameter to 0.

Addressing modes
802.15.4 frames have a source address, a destination address, and a destination PAN ID in the over-
the-air (OTA) frame. The source and destination addresses may be either long or short and the
destination address may be either a unicast or a broadcast. The destination PAN ID is short and it may
also be the broadcast PAN ID (ID is set to 0xFFFF).
In Transparent mode, the destination address is set by the DH and DL parameters, but, in API mode, it
is set by the type of TX request used: 64-bit Transmit Request - 0x00 or 16-bit Transmit Request - 0x01
frames. In either Transparent mode or API mode, the destination PAN ID is set with the ID parameter,
and the source address is set with the MY parameter if MY is less than 0xFFFE, otherwise the source
address is set with the device's serial number (SH and SL).

Broadcasts and unicasts
Broadcasts are identified by the 16-bit short address of 0xFFFF. Any other destination address is
considered a unicast and is a candidate for acknowledgments, if enabled.

Broadcast PAN ID
The Broadcast PAN ID is also 0xFFFF. Its effect is to traverse all PANs in the vicinity of a local device.

Short and long addresses
A short address is 16 bits and a long address is 64 bits. The short address is set with the MY
parameter. If the short address is 0xFFFE, then the address of the device is long and it is the serial
number of the device as read by the SH and SL parameters.

Networking Peer-to-peer networks

Digi XBee® 3 802.15.4 RF Module User Guide 111

Peer-to-peer networks

By default, XBee 3 802.15.4 RF Modules are configured to operate within a peer-to-peer network
topology and therefore are not dependent uponmaster/slave relationships. Our peer-to-peer
architecture features fast synchronization times and fast cold start times. This default configuration
accommodates a wide range of RF data applications.
To form a peer-to-peer network, set each device to the same channel and PAN ID and configure either
a unique short address (MY) for each device or set MY to 0xFFFF to use the unique long addresses.

Master/slave networks
In a Master Slave network, there is a coordinator and one or more end devices. When end devices
associate to the coordinator, they become members of that Personal Area Network (PAN). As such,
they share the same channel and PAN ID. PAN IDs must be unique to prevent miscommunication
between PANs. Depending on the A1 and A2 parameters, association may assist in automatically
assigning the PAN ID and the channel. These parameters are specified below based on the network
role (end device or coordinator).

End device association
End device association occurs if CE is 0 and A1 has bit 2 set. See the following table and A1 (End Device
Association).

Bit Hex value Meaning

0 0x01 Allow PAN ID reassignment

1 0x02 Allow channel reassignment

2 0x04 Auto association

3 0x08 Poll coordinator on pin wake

By default, A1 is 0, which disables association and causes a device to operate in peer-to-peer mode.
When bit 2 is set, the module becomes an end device and associates to a coordinator. This is done by
sending out an active scan to detect beacons from nearby networks. The active scan iterates through
each channel defined by SC and transmits a Beacon Request command to the broadcast address and
the broadcast PAN ID. It then listens on that channel for beacons from any coordinator operating on
that channel. Once that time expires, the active scan selects the next channel, repeating until all the
channels defined by SC have been scanned.
If A1 is 0x04 (bit 0 clear, bit 1 clear, and bit 2 set), then the active scan will reject all beacons that do
not match both the configured PAN ID and the configured channel. This is the best way to join a
particular coordinator.
If A1 is 0x05 (bit 0 set, bit 1 clear, and bit 2 set), then the active scan will accept a beacon from any
PAN ID, providing the channel matches. This is useful if the channel is known, but not the PAN ID.

Networking Master/slave networks

Digi XBee® 3 802.15.4 RF Module User Guide 112

If A1 is 0x06 (bit 0 clear, bit 1 set, and bit 2 set), then the active scan will accept a beacon from any
channel, providing the PAN ID matches. This is useful if the PAN ID is known, but not the channel.
If A1 is 0x07 (bit 0 set, bit 1 set, and bit 2 set), then the active scan will accept a beacon from any PAN
ID and from any channel. This is useful when the network does not matter, but the one with the best
signal is desired.
Whenever multiple beacons are received that meet the criteria of the active scan, then the beacon
with the best link quality is selected. This applies whether A1 is 0x04, 0x05, 0x06, or 0x07.
Before the End Device joins a network, the Associate LED will be on solid. After it joins a network, the
Associate LED will blink twice per second. You can also query the association status with AI
(Association Indication) or by observing modem status frames when the end device is operating in API
mode.
If association parameters are changed after the end device is associated, the end device will leave the
network and re-join in accordance with the new configuration parameters.
After an end device successfully joins a network, the DH and DL parameters on the device are updated
to point towards the address of the coordinator it associated with. This allows communication to the
coordinator to occur automatically in Transparent mode, and ensures that indirect messaging poll
requests are sent to the correct address—see Direct and indirect transmission.
Additionally, after associating, an end device has MY (16-bit Source Address) set to 0xFFFE, indicating
that the newly associated end device should use its 64-bit address. After associating, if you want a 16-
bit address for the end device, set MY again.

Note MY is reset to 0xFFFE if the end device needs to leave and re-associate with the coordinator.

If a coordinator changes channel or PAN ID, the end device is not informed of the change and indicates
that it is still associated. You can set DA (Force Disassociation) on the end device to force it to leave
the network and attempt to join again, validating that the end device can still communicate with the
coordinator.

Coordinator association
A device becomes a coordinator and allows association if CE is 1 and A2 has bit 2 set. See the following
table and A2 (Coordinator Association).

Bit Hex value Meaning

0 0x01 Allow PAN ID reassignment

1 0x02 Allow channel reassignment

2 0x04 Allow association

By default, A2 is 0, which prevents devices from associating to the coordinator. So, if CE is 1 and A2 bit
2 is 0, the device still creates a network, but end devices are unable to associate to it.

Note In this configuration, depending on the value of SP (Cyclic Sleep Period) the device might send
messages indirectly—see Direct and indirect transmission.

If A2 bit 2 is set, then joining is allowed after the coordinator forms a network.
If A2 bit 0 is set, the coordinator performs an active scan. The active scan process sends a beacon
request to the broadcast address (0xFFFF) and the broadcast PAN ID (0xFFFF) and listens for beacons
responses. This process is repeated for each channel specified in SC.

Networking Master/slave networks

Digi XBee® 3 802.15.4 RF Module User Guide 113

If none of the beacons received during the active scan process match the ID parameter of the
coordinator, then its ID parameter will be the PAN ID of the new network it forms. However, if a
beacon response matches the PAN ID of the coordinator, the coordinator forms a PAN with a unique
PAN ID.
If A2 bit 0 is clear, then the coordinator forms a network on the PAN ID identified by the ID parameter,
without regard to another network that might have the same PAN ID.
If A2 bit 1 is set, the coordinator performs an energy scan, similar to the active scan. It will listen on
each channel specified in the SC parameter. After the scan is complete, the channel with the least
energy is selected to form the new network.
If A2 bit 1 is clear, then no energy scan is performed and the CH parameter is used to select the
channel of the new network.
If bits 0 and 1 of A2 are both set, then an active scan is performed followed by an energy scan.
However, the channels on which the active scan finds a coordinator are eliminated as possible
channels for the energy scan, unless such an action would eliminate all channels. If beacons are found
on all channels in the channel mask, then then the energy scan behaves the same as it would if
beacons are not found on any of those channels. Therefore, the active scan will be performed on all
channels in the channel mask. Then, an energy scan will be performed on the channels in the channel
mask that did not find a coordinator.
Depending on the result of the active scan, the set of channels for the energy scan varies. If a PAN ID
is found on all the channels in the channel mask, then the energy scan operates on all the channels in
the channel mask. If at least one of the channels in the channel mask did not find a PAN ID, then the
channels with PAN IDs are eliminated from consideration for the energy scan. After the energy scan
completes, the channel with the least energy is selected for forming the new network.
Whenever CE, ID, A2, or MY changes, the coordinator will re-form the network. Any end devices
associated to the coordinator prior to changing one of these parameters will lose association. For this
reason, it is important not to change these parameters on a coordinator unless needed, or configure
end devices to be flexible about what network they associate with the A1 command.
Before the Coordinator forms a network, the Associate LED will be on solid. After it forms a network,
the Associate LED will blink once per second.

Association indicators
There are two types of association indicators: Asynchronous device status messages, and on demand
queries. Asynchronous device status messages occur whenever a change occurs and API mode is
enabled. On demand queries occur when the AI command is issued, which can occur in Command
mode, in API mode, or as a remote command.

Modem status messages
Not all device status messages are related with association, but for completeness all device status
types reported by XBee 3 802.15.4 RF Module are listed in the following table.

Type Meaning

0x00 Hardware reset.

0x01 Watchdog reset.

0x02 End device successfully associated with a coordinator.

0x03 End device disassociated from coordinator or coordinator failed to form a new network.

Networking Direct and indirect transmission

Digi XBee® 3 802.15.4 RF Module User Guide 114

Type Meaning

0x06 Coordinator formed a new network.

0x0D Input voltage is too high, which limits RF power to PL = 3.

Association indicator status codes
The XBee 3 802.15.4 RF Module can potentially give any of the status codes in response to AI
(Association Indication) in the following table.

Code Meaning

0x00 Coordinator successfully started, End device successfully associated, or operating in peer to
peer mode where no association is needed.

0x03 Active Scan found a PAN coordinator, but it is not currently accepting associations.

0x04 Active Scan found a PAN coordinator in a beacon-enabled network, which is not a supported
feature.

0x05 Active Scan found a PAN, but the PAN ID does not match the configured PAN ID on the
requesting end device and bit 0 of A1 is not set to allow reassignment of PAN ID.

0x06 Active Scan found a PAN on a channel does not match the configured channel on the
requesting end device and bit 1 of A1 is not set to allow reassignment of the channel.

0x0C Association request failed to get a response.

0x13 End device is disassociated or is in the process of disassociating.

0xFF Initialization time; no association status has been determined yet.

Direct and indirect transmission
There are two methods to transmit data:

n Direct transmission: data is transmitted immediately to the Destination Address
n Indirect transmission: a packet is retained for a period of time and is only transmitted after the

destination device (source address = destination address) requests the data.

Indirect transmissions can only occur on a device configured to be an indirect messaging coordinator.
Indirect transmissions are useful to ensure packet delivery to a sleeping device. Indirect messaging
allows messages to reliably be sent asynchronously to sleeping end devices, or operate like an
incoming mailbox for a P2P network. A TX request can be made when the end device is sleeping and
unable to receive RF data, and instead of being immediately send to an inoperative device, the packet
is queued by the indirect messaging coordinator until the end device wakes or polls it for data.
Note that indirect messaging works best with association and end devices cyclically sleeping, but can
be used in a P2P configuration by setting CE (Device Role) to 1 on the device that you want to hold the
indirect messages and configuring the other device to poll correctly. In the context of indirect
messaging, an end device refers not just to a device with A1 (End Device Association) set to associate
but the target of an indirect message. Similarly, an indirect messaging coordinator does not have to
allow association (A2 (Coordinator Association)) to sendmessages indirectly.

Networking Direct and indirect transmission

Digi XBee® 3 802.15.4 RF Module User Guide 115

Configure an indirect messaging coordinator
A device becomes an indirect messaging coordinator once CE (Device Role) = 1 and SP (Cyclic Sleep
Period) is not 0. We recommend ensuring that SP and ST are set to the same values on the indirect
messaging coordinator and end device, even if the indirect messaging coordinator is not configured to
sleep. This is to allow the indirect messaging coordinator to sendmessages directly if it knows the
end device is awake and sleeping cyclically.
If you are going to use a Master/Slave network with indirect messaging, ensure that the indirect
messaging coordinator is also the network coordinator by allowing association (set bit 2 of A2
(Coordinator Association) to 1).

Send indirect messages
To send an indirect message, ensure that the previous requirements are met and transmit normally.
The indirect messaging coordinator queues the message until the end device requests data or the
message is in the indirect queue for 2.5 times the value of SP. If 2.5 * SP is longer than 65 seconds,
then 65 seconds is the limit the indirect message waits for a poll before it is discarded. This means
that if the coordinator is sending data to the end device, the end device should poll the coordinator
every 65 seconds to avoid losing data, regardless of the value of SP.
Ensure that the message is sent to the addressed specified by MY (16-bit Source Address) on the end
device. If MY on the end device is 0xFFFF or 0xFFFE, then you must use the 64-bit address, otherwise
use the value of MY. Even though an end device configured with a short address always receives direct
transmissions destined to its 64-bit address, it will not receive an indirect message directed at its 64-
bit address if it is configured to use a 16-bit address.
If the indirect messaging coordinator is operating in API mode, then after transmitting an indirect
message the usual TX status frame (Extended Transmit Status - 0x8B or Transmit Status - 0x89) is not
immediately generated by the device. If the end device polls for the data within the timeout (2.5 * SP
or 65 seconds), then a TX status frame with status 0x00 (message sent) is sent. If the message is
discarded due to the timeout expiring, the status frame is 0x03 (message purged).
After receiving a poll request and transmitting data to an end device, the indirect messaging
coordinator sends all messages directly until ST time has elapsed. This is because after receiving RF
data, the end device stays awake for ST time if configured in Cyclic Sleepmode (SM = 4). After ST time
has elapsed, messages are sent indirectly again.
The Coordinator currently is able to retain up to five indirect messages.

Receive indirect messages
End devices must poll the indirect messaging coordinator in order to receive indirect messages.
There are three ways to generate a poll request:

n End devices using cyclic sleep automatically send a poll to the coordinator when they wake up
unless SO bit 0 is set.

n End devices using pin sleepmay be configured to send a poll on a pin wakeup by setting bit 3 of
A1.

n Use FP (Force Poll) to manually send a poll to the coordinator. In Transparent mode, the poll
request is not sent until the command is exited.

The poll is sent to the address located in DH and DL, so ensure that they are set to match the
coordinator's source addressing mode. If the end device (A1 bit 2 set) has associated with a
coordinator (A2 bit 2 set and CE = 1), then DH and DL are automatically set to the correct values. If

Networking Encryption

Digi XBee® 3 802.15.4 RF Module User Guide 116

you use indirect messaging in a P2P network, DH and DL have to be set manually on the end device to
point towards the indirect messaging coordinator.
It is more difficult to use indirect messaging with pin sleep than with cyclic sleep because the end
device must wake up periodically to poll for the data from the coordinator. Otherwise, the coordinator
discards the data after SP*2.5 time, or 65 seconds, whichever is smaller. It is also important to keep
the pin woke device awake for ST time after receiving indirect messages, otherwise the coordinator
could attempt to transmit directly while the end device is asleep, and the transmission will fail. For
this reason we recommend only using indirect messaging with cyclic sleep.

Encryption
The XBee 3 802.15.4 RF Module supports AES 128-bit encryption. 128-bit encryption refers to the
length of the encryption key entered with the KY command (128 bits = 16 bytes). The 802.15.4
protocol specifies eight security modes, enumerated as shown in the following table.

Level Name Encrypted?
Length of message integrity
check

Packet length
overhead

0 N/A No 0 (no check) 0

1 MIC-32 No 4 9

2 MIC-64 No 8 13

3 MIC-128 No 16 21

4 ENC Yes 0 (no check) 5

5 ENC-MIC-32 Yes 4 9

6 ENC-MIC-64 Yes 8 13

7 ENC-MIC-128 Yes 16 21

The XBee 3 802.15.4 RF Module only supports security levels 0 and 4. It does not support message
integrity checks. EE 0 selects security level 0 and EE 1 selects security level 4. When using encryption,
all devices in the network must use the same 16-byte encryption key for valid data to get through.
Mismatched keys will corrupt the data output on the receiving device. Mismatched EE parameters will
prevent the receiving device from outputting received data.
Working from a maximum packet size of 116 bytes, encryption affects the maximum payload as shown
in the following table.

Factor

Effect on
maximum
payload Comment

Compatibility
mode

Force to 95 If C8 bit 0 is set, all packets are limited to 95 bytes, regardless of other
factors listed below. This is how the Legacy 802.15.4 module (S1
hardware) functions.

Packet
overhead

Reduce by 5 This penalty for enabling encryption is unavoidable due to the 802.15.4
protocol.

Networking Maximum payload

Digi XBee® 3 802.15.4 RF Module User Guide 117

Factor

Effect on
maximum
payload Comment

Source
address

Reduce by 6 This penalty is unavoidable because the 802.15.4 requires encrypted
packets to be sent with a long source address, even if a short address
would otherwise be used.

Destination
address

Reduce by 6 This penalty only applies if sending to a long address rather than a
short address.

App header Reduce by 4 The app header for encryption is 4 bytes long. This penalty only applies
if MM = 0 or 3.

Because of the two mandatory reductions when using encryption, no packet can exceed 116 - (5+6)
=105 bytes. The other options may further reduce the maximum payload to 101 bytes, 99 bytes, or 95
bytes.
When operating in API mode and not using encryption, if the source address is long, the receiving
device outputs an RX Indicator (0x80) frame for received data. But, if the source address is short, the
receiving device outputs a Receive Packet (0x81) frame for received data. These same rules apply for
encryption if MM is 0 or 3. This is possible because the four-byte encryption App header includes the
short address of the sender and the long received address is not used for API output. If encryption is
enabled withMM of 1 or 2, then no App header exists, the source address is always long, and the
receiving device in legacy API mode (AP = 2) always outputs a Description.

Maximum payload
The absolute maximum payload size for an 802.15.4 packet is 116 bytes. Depending onmodule
configuration, the actual maximum payload size will be reduced.
If you attempt to send an API packet with a larger payload than specified, the device responds with a
Transmit Status frame (0x89 and 0x8B) with the Status field set to 74 (Data payload too large). When
operating in transparent mode, if you attempt to send data larger than the maximum payload size,
the data will be packetized and sent as multiple over-the-air transmissions. For more information, see
Serial-to-RF packetization.

Maximum payload rules
1. If you enable transmit compatibility (C8) with the Legacy 802.15.4 module (S1 hardware):

n There is a fixedmaximum payload of 100 bytes
n The rest of the rules do not apply. They apply only when you disable transmit

compatibility with the Legacy 802.15.4 module.
2. The maximum achievable payload is 116 bytes. This is achieved when:

n Not using encryption.
n Not using the application header (MM is set to 1 or 2).
n Using the short source address.
n Using the short destination address.

Networking Maximum payload

Digi XBee® 3 802.15.4 RF Module User Guide 118

3. If you are using the application header, the maximum achievable payload is reduced by:
n 2 bytes if not using encryption (EE = 0)
n 4 bytes if using encryption (EE = 1)

4. If you are using the long source address (MY = 0xFFFE), the maximum achievable payload is
reduced by 6 bytes (size of long address (8) - size of short address (2) = 6).

5. If you are using encryption, the source addresses are promoted to long source addresses, so
the maximum achievable payload is reduced by 6 bytes.

6. If you are using the long destination address, the maximum achievable payload is reduced by 6
bytes (the difference between the 8 bytes required for a long address and the 2 bytes required
for a short address).

7. If you are using encryption, the maximum achievable payload is reduced by 5 bytes.

Note You can query NP (Maximum Packet Payload Bytes) to determine the maximum achievable
payload size based on current parameters. NP always assumes a long destination address will be
used.

Maximum payload summary tables
The following table indicates the maximum payload when using transmit compatibility with Legacy
802.15.4 modules (S1 hardware).

Encryption

Enabled Disabled

95 B 100 B

The following table indicates the maximum payload when using the application header and not using
encryption. Increment the maximum payload in 2 bytes if you are not using the application header.

Destination address

Source address Short Long

Short 114 B 108 B

Long 108 B 102 B

The following table indicates the maximum payload when using the application header and using
encryption. Increment the maximum payload in 4 bytes if you are not using the application header.

Destination address

Source address Short Long

Short 101 B 95 B

Long 101 B 95 B

Networking Maximum payload

Digi XBee® 3 802.15.4 RF Module User Guide 119

Work with Legacy devices
The Legacy 802.15.4 device (S1 hardware) transmits packets one by one. It does not transmit a
packet until it receives all expected acknowledgments of the previous packet or the timeout expires.
The XBee/XBee-PRO S2C 802.15.4 and XBee 3 802.15.4 RF Modules enhance transmission by
implementing a transmission queue that allows the device to transmit to several devices at the same
time. Broadcast transmissions are performed in parallel with the unicast transmissions.
This enhancement in the XBee/XBee-PRO S2C 802.15.4 and XBee 3 802.15.4 RF Modules can produce
problematic behavior under certain conditions if the receiver is a Legacy 802.15.4 module (S1
hardware).
The conditions are:

n The sender is an XBee 3 802.15.4 RF Module, and the receiver is a Legacy 802.15.4 module.
n The sender has the Digi header enabled (MM = 0 or 3) and RR (XBee Retries) > 0.
n The sender sends broadcast and unicast messages at the same time to the Legacy 802.15.4

module without waiting for the transmission status of the previous packet.

The effect is:

n The receiver may display duplicate packets.

The solution is:

n Set bit 0 of the C8 (802.15.4 compatibility) parameter to 1 to enable TX compatibility mode in the
XBee 3 802.15.4 RF Module. This eliminates the transmission queue to avoid sending to multiple
addresses simultaneously. It also limits the packet size to the levels of the Legacy 802.15.4
module.

For information on the specific differences between an XBee 3 and Legacy 802.15.4 devices, refer to
the Digi XBee 3 802.15.4 Migration Guide.

https://www.digi.com/resources/documentation/Digidocs/PDFs/90002279.pdf

Network commissioning and diagnostics

We call the process of discovering and configuring devices in a network for operation, "network
commissioning." Devices include several device discovery and configuration features. In addition to
configuring devices, you must develop a strategy to place devices to ensure reliable routes. To
accommodate these requirements, devices include features to aid in placing devices, configuring
devices, and network diagnostics.

Remote configuration commands 121
Node discovery 121

Digi XBee® 3 802.15.4 RF Module User Guide 120

Network commissioning and diagnostics Remote configuration commands

Digi XBee® 3 802.15.4 RF Module User Guide 121

Remote configuration commands
When running in API mode, the firmware has provisions to send configuration commands to remote
devices using Remote AT Command Request - 0x17. You can use this frame to send commands to a
remote device to read or set command parameters.

CAUTION! It is important to set the short address to 0xFFFE when sending to a long address.
Any other value causes the long address to be ignored. This is particularly problematic in the
case where nodes are set up with default addresses of 0 and the 16-bit address is
erroneously left at 0. In that case, even with a correct long address the remote command
goes out to all devices with the default short address of 0, potentially resulting in harmful
consequences, depending on the command.

Send a remote command
To send a remote command populate the Remote AT Command Request frame (0x17) with:

1. The 64-bit address of the remote device.
2. The correct command options value.
3. The command and parameter data (optional). If (and only if) all nodes in the PAN have unique

short addresses, then remote configuration commands can be sent to 16-bit short addresses
by setting the short address in the API frame for Remote AT commands. In that case, the 64-bit
address is unused and does not matter.

Apply changes on remote devices
Any changes you make to the configuration command registers using AT commands do not take effect
until you apply the changes. For example, if you send the BD command to change the baud rate, the
actual baud rate does not change until you apply the changes. To apply changes:

1. Set the Apply Changes option bit in the Remote AT Command Request frame (0x17).
2. Issue an AC (Apply Changes) command to the remote device.
3. Issue a WR + FR command to the remote device to save changes and reset the device.

Remote command responses
If the remote device receives a Remote AT Command Request (0x17 frame type), the remote sends an
AT Command Response (0x88 frame type) back to the device that sent the remote command. The AT
command response indicates the status of the command (success, or reason for failure), and in the
case of a command query, it includes the parameter value.
The device that sends a remote command will not receive a remote command response frame if the
frame ID in the remote command request is set to 0 , indicating that the request is sent without
acknowledgment.

Node discovery
Node discovery has three variations as shown in the following table:

Network commissioning and diagnostics Node discovery

Digi XBee® 3 802.15.4 RF Module User Guide 122

Commands Syntax Description

ND
(Network
Discover)

ND Seeks to discover all nodes in the network (on the current PAN ID).

ND
(Network
Discover)

ND<NI
String>

Seeks to discover if a particular node named <NI String> is found in the
network.

DN
(Discover
Node)

DN<NI
String>

Sets DH/DL to point to the address (64-bit or 16-bit depending on the MY
value of the matching node) of the node whose <NI String> matches.

The node discovery command (without an NI string designated) sends out a broadcast to every node
in the PAN ID. Each node in the PAN sends a response back to the requesting node after a jittered
time delay to ensure reliable delivery.

About node discovery
The node discovery command (without an NI string designated) sends out a broadcast to every node
in the PAN ID. Each node in the PAN sends a response back to the requesting node.
When the node discovery command is issued in AT commandmode, all other AT commands are
inhibited until the node discovery command times out, as specified by the NT parameter. After the
timeout, an extra CRLF is output to the terminal window, indicating that new AT commands can be
entered. This is the behavior whether or not there were any nodes that responded to the broadcast.
When the node discovery command is issued in API mode, the behavior is the same except that the
response is output in API mode. If no nodes respond, there will be no responses at all to the node
discover command. The requesting node is not able to process a new AT command untilNT times out.

Node discovery in compatibility mode
Node discovery (without an NI string parameter) in compatibility mode operates the same in
compatibility mode as it does outside of compatibility mode with one minor exception:
If C8 bit 1 is set and if requesting node is operating in API mode and if no responses are received by
the time NT times out, then an API AT command response of OK (API frame type 0x88) is sent out the
serial port rather than giving no response at all, which would happen if C8 bit 1 is not set.

Directed node discovery
The directed node discovery command (NDwith an NI string parameter) sends out a broadcast to find
a node in the network with a matching NI string. If such a node exists, it sends a response with its
information back to the requesting node.
In Transparent mode, the requesting node will output an extra CRLF following the response from the
designated node and the command will terminate, being ready to accept a new AT command. In the
event that the requested node does not exist or is too slow to respond, the requesting node outputs
an ERROR response after NT expires.
In API mode, the response from the requesting node will be output in API mode and the command will
terminate immediately. If no response comes from the requested node, the requesting node outputs
an error response in API mode after NT expires.

Network commissioning and diagnostics Node discovery

Digi XBee® 3 802.15.4 RF Module User Guide 123

Directed node discovery in compatibility mode
The behavior of the Legacy 802.15.4 module (S1 hardware) varies with the default behavior described
above for the directed node discovery command. The Legacy module does not complete the command
untilNT expires, even if the requested node responds immediately. After NT expires, it gives a
successful response, even if the requested node did not respond. To enable this behavior to be
equivalent to the Legacy 802.15.4 module, set bit 1 of the C8 parameter.

Destination Node
DN (Discover Node) with anNI (Node Identifier) string parameter sends out a broadcast containing the
NI string being requested. The responding node with a matching NI string sends its information back
to the requesting node. The local node then sets DH/DL to match the address of the responding node.
As soon as this response occurs, the command terminates successfully. If operating in Command
mode, anOK string is output and Commandmode exits. In API mode another AT commandmay be
entered.
If an NI string parameter is not provided, the DN command terminates immediately with an error. If a
node with the given NI string doesn't respond, the DN command terminates with an error after NT
times out.
Unlike ND (with or without an NI string), DN does not cause the information from the responding node
to be output; rather it simply sets DH/DL to the address of the responding node. If the responding
node has a short address, then DH/DL is set to that short address (with DH at 0 and DL set to the
value of MY). If the responding node has a long address (MY is 0xFFFE), then DH/DL are set to the
SH/SL of the responding node.

Sleep support

Sleep is implemented to support installations where a mains power source is not available and a
battery is required. In order to increase battery life, the device sleeps, which means it stops operating.
It can be woken by a timer expiration or a pin.

Sleepmodes 125
Sleep parameters 126
Sleep pins 126
Sleep conditions 127

Digi XBee® 3 802.15.4 RF Module User Guide 124

Sleep support Sleep modes

Digi XBee® 3 802.15.4 RF Module User Guide 125

Sleep modes
Sleepmodes enable the device to enter states of low-power consumption when not in use. To enter
Sleepmode, the following conditions must be met:

n A valid sleepmode is selected via SM (SM = 1, 4, 5, or 6)
n DTR/SLEEP_RQ (TH pin 9/SMT pin 10) is asserted (when SM = 1 or 5)
n The device is idle (no data transmission or reception) for the amount of time defined by ST

(Cyclic Sleep Wake Time) (when SM = 4 or 5)

The following table shows the sleepmode configurations.

Sleep
mode Description

SM 0 No sleep

SM 1 Pin sleep

SM 4 Cyclic sleep

SM 5 Cyclic sleep with pin wake-up

SM 6 MicroPython sleep (with optional pin wake). For complete details see the Digi
MicroPython Programming Guide.

Pin Sleep mode (SM = 1)
Pin Sleepmode minimizes quiescent power (power consumed when in a state of rest or inactivity). In
order to use Pin Sleepmode, configure D8 (DIO8/DTR/SLP_Request Configuration) (TH pin 9/SMT pin
10) for DTR/SLEEP_RQ input (D8 = 1). This mode is voltage level-activated; when SLEEP_RQ is
asserted, the device finishes any transmit or receive activities, enters Idle mode, and then enters a
state of sleep. The device does not respond to either serial or RF activity while in pin sleep.
To wake a sleeping device operating in Pin Sleepmode, de-assert DTR/SLEEP_RQ. The device wakes
when SLEEP_RQ is de-asserted and is ready to transmit or receive when the CTS line is low. When
waking the device, the pin must be de-asserted at least two 'byte times' after CTS goes low. This
assures that there is time for the data to enter the DI buffer.
Devices with SPI functionality can use the SPI_SSEL pin instead of D8 for pin sleep control. If D8 = 0
and P7 = 1, SPI_SSEL takes the place of DTR/SLEEP_RQ and functions as described above. In order to
use SPI_SSEL for sleep control while communicating on the UART, the other SPI pins must be disabled
(P5, P6, and P8 set to 0). See Low power operation for information on using SPI_SSEL for sleep control
while communicating over SPI.

Cyclic Sleep mode (SM = 4)
The Cyclic Sleepmodes allow devices to periodically check for RF data. When the SM parameter is set
to 4, the XBee 3 802.15.4 RF Module is configured to sleep, then wakes once per cycle to check for
data from a coordinator. The Cyclic Sleep Remote sends a poll request to the coordinator at a specific
interval set by the SP (Cyclic Sleep Period) parameter. The coordinator transmits any queued data
addressed to that specific remote upon receiving the poll request.
If the coordinator does not respond with queued data and no UART activity is detected, the device will
immediately sleep. If it detects any activity (RF or UART), then the device wakes for ST time. You can
also set SO bit 8 to force the device to always wake for the full ST time.

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Sleep support Sleep parameters

Digi XBee® 3 802.15.4 RF Module User Guide 126

ON_SLEEP goes high and CTS goes low each time the remote wakes, allowing for communication
initiated by the remote host if desired.

Cyclic Sleep with Pin Wake-up mode (SM = 5)
Use this mode to wake a sleeping remote device through either the RF interface or by asserting (low)
DTR/SLEEP_RQ for event-driven communications. The cyclic sleepmode works as described previously
with the addition of a pin-controlled wake-up at the remote device.
The DTR/SLEEP_RQ pin is level-triggered. The device wakes when a low is detected then sets CTS low
as soon as it is ready to transmit or receive. The device stays awake as long as DTR/SLEEP_RQ is low;
once DTR/SLEEP_RQ goes high the device returns to cyclic sleep operation. If DTR/SLEEP_RQ is
momentarily pulsed low, the minimum wake time is ST (Cyclic Sleep Wake Time) even if DTR/SLEEP_
RQ is low for less time.
Once awake, any activity resets the ST (Cyclic Sleep Wake Time) timer, so the device goes back to
sleep only after there is no RF activity for the duration of the timer.

MicroPython sleep with optional pin wake (SM = 6)
The MicroPython sleep option allows a user's MicroPython program to exclusively control the device's
sleep operation (with optional pin wake). For full details refer to the Digi MicroPython Programming
Guide.

Sleep parameters
The following AT commands are associated with the sleepmodes. See the linked commands for the
parameter's description, range and default values.

n SM (Sleep Mode)
n SP (Cyclic Sleep Period)
n ST (Cyclic Sleep Wake Time)
n DP (Disassociated Cyclic Sleep Period)
n SO (Sleep Options)

Sleep pins
The following table describes the three external device pins associated with sleep. See the XBee 3 RF
Module Hardware Reference Manual for the pinout of your device.

Pin name Description

DTR/SLEEP_
RQ

For SM = 1, high puts the device to sleep and low wakes it up. For SM = 5, a high to
low transition wakes the device until the pin transitions back to a high state.

SPI_SSEL Alternative SLEEP_RQ line for devices operating in SPI. See Low power operation for
further information.

CTS If D7 = 1, high indicates that the device is asleep and low indicates that it is awake
and ready to receive serial data.

ON_SLEEP Low indicates that the device is asleep and high indicates that it is awake.

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Sleep support Sleep conditions

Digi XBee® 3 802.15.4 RF Module User Guide 127

Sleep conditions
Since instructions stop executing while the device is sleeping, it is important to avoid sleeping when
the device has work to do. For example, the device will not sleep if any of the following are true:

1. The device is operating in Commandmode, or in the process of getting into Commandmode
with the +++ sequence.

2. The device is processing AT commands from API mode
3. The device is processing remote AT commands
4. Something is queued to the serial port and that data is not blocked by RTS flow control

If each of the above conditions are false, then sleepmay still be blocked in these cases:

1. Enough time has not expired since the device has awakened.
a. If the device is operating in pin sleep, the amount of time needed for one character to be

received on the UART is enough time.
b. If the device is operating in cyclic sleep, enough time is defined by a timer. The duration of

that timer is:
i. defined by ST if in SM 5 mode and it is awakened by a pin
ii. 30 ms to allow enough time for a poll and a poll response
iii. 750 ms to allow enough time for association, in case that needs to happen

c. In addition, the wake time is extended by an additional ST time when new OTA data or
serial data is received.

2. Sleep Request pin is not asserted when operating in pin sleepmode
3. Data is waiting to be sent OTA.

AT commands

Networking commands 129
Discovery commands 132
Coordinator/End Device configuration commands 136
802.15.4 Addressing commands 140
Security commands 143
Secure Session commands 145
RF interfacing commands 146
MAC diagnostics commands 148
Sleep settings commands 149
MicroPython commands 152
File System commands 153
Bluetooth Low Energy (BLE) commands 155
API configuration commmands 157
UART interface commands 159
AT Command options 161
UART pin configuration commands 162
SMT/MMT SPI interface commands 164
I/O settings commands 167
I/O sampling commands 176
I/O line passing commands 179
Location commands 183
Diagnostic commands - firmware/hardware information 184
Memory access commands 186
Custom Default commands 188

Digi XBee® 3 802.15.4 RF Module User Guide 128

AT commands Networking commands

Digi XBee® 3 802.15.4 RF Module User Guide 129

Networking commands
Configure the basic 802.15.4 network settings. All devices on the network must have matching
network settings to communicate.

CH (Operating Channel)
The operating channel devices use to transmit and receive data.
In order for devices to communicate with each other, they must share the same channel number. A
network can use different channels to prevent devices in one network from listening to the
transmissions of another and to reduce interference.
The command uses IEEE 802.15.4 channel numbers.

Parameter range
0xB - 0x1A

Default
0xC (channel 12)

ID (Extended PAN ID)
The device's PAN (Personal Area Network) identifier. PAN IDs allows for the logical separation of
multiple networks that share the same RF channel.
In order for devices to communicate, they must be configured with the same PAN ID and channel.
Setting ID to 0xFFFF indicates a global transmission for all PANs. It does not indicate a global receive.

Parameter range
0 - 0xFFFF

Default
0x3332

MM (MAC Mode)
Use the MM command to specify the operating MAC Mode; for more information see MAC Mode
configuration.
The MAC Mode serves two purposes:

n Enable/disable the use of a Digi header, which enables advanced features.
n Enable/disable MAC-Layer acknowledgments.

The default configuration includes a Digi-specific header to every RF packet. This header includes
information that enables advanced features:

n Network discovery support [ND (Network Discover) and DN (Discover Node)]
n Application-layer retries [RR (XBee Retries)]
n Duplicate packet detection [RR (XBee Retries)]
n Remote AT command support [Remote AT Command Request - 0x17]

AT commands Networking commands

Digi XBee® 3 802.15.4 RF Module User Guide 130

The presence of the Digi header prevents interoperability with third-party devices. When the Digi
header is disabled, encrypted data that is not valid is sent out of the UART and not filtered out. The
Digi header can be disabled by setting MM to 1 or 2.
WhenMM is set to 1 or 3, MAC-layer retries are disabled.

Parameter range
0 - 3

Parameter Configuration ACKs

0 Digi mode With ACKs

1 802.15.4 No ACKs

2 802.15.4 With ACKs

3 Digi mode No ACKs

Default
0

C8 (Compatibility Options)
Sets the operational compatibility with the legacy 802.15.4 device (S1 hardware). This parameter
should only be set when operating in a mixed network that contains XBee Series 1 devices.

Parameter range
0 - 3

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

AT commands Networking commands

Digi XBee® 3 802.15.4 RF Module User Guide 131

Bit Meaning Setting Description

01 TX
compatibility

0 Transmissions are optimized as follows:

1. Maximum transmission size is affected by multiple factors (MM,
MY, DH, DL, and EE). See Maximum payload rules. In the best
case, with no app header, short source and destination
addresses, and no encryption, the maximum transmission size
is 116 bytes.

2. Multiple messages can be present simultaneously on the active
queue, providing they are all destined for different addresses.
This improves performance.

1 Transmissions operate like the Legacy 802.15.4 module, which means
the following:

1. Maximum transmission size is 95 bytes for encrypted packets
and 100 bytes for un-encrypted packets. These maximum
transmission sizes are not adjusted upward for short
addresses or for lack of an APP header.

2. Only one transmission message can be active at a time, even if
other messages in the queue would go to a different
destination address.

1 Node
Discovery
compatibility

0 Node discovery operates like other XBee devices and not like the
Legacy 802.15.4 module. This means the following:

1. A directedND request terminates after the single response
arrives. This allows the device to process other commands
without waiting for the NT to time out.

2. The device outputs an error response to the directedND
request if no response occurs within the time out.

1 The module operates like the Legacy 802.15.4 module, which has the
following effect:

1. When the expected response arrives, the command remains
active untilNT times out. (NT defaults to 2.5 seconds.) This
prevents the device from processing any other AT command,
even if the desired response occurs immediately.

2. When the timeout occurs, the command silently terminates and
indicates success, whether or not a response occurred within
the NT timeout.

Default
0x00

1This bit does not typically need to be set. However, when the XBee 3 802.15.4 RF Module is streaming
broadcasts in transparent mode to a Legacy 802.15.4 module (S1 hardware), and RR > 0, set this bit to avoid a
watchdog reset on the Legacy 802.15.4 module.

AT commands Discovery commands

Digi XBee® 3 802.15.4 RF Module User Guide 132

Discovery commands
Network Discovery and corresponding discovery options.
Network discovery can only be performed if the Digi header is enabled via the MM command.

NI (Node Identifier)
The node identifier is a user-defined name or description of the device. Use this string with network
discovery commands in order to easily identify devices on the network.
Use the ND (Network Discover) command with this string as an argument to filter network discovery
results.
Use the DN (Discover Node) command with this string as an argument to resolve the 64-bit address of
a node with a matching NI string.

Parameter range
A string of case-sensitive ASCII printable characters from 1 to 20 bytes in length. A carriage return
or a comma automatically ends the command.

Default
0x20 (an ASCII space character)

DD (Device Type Identifier)
Stores the Digi device type identifier value. Use this value to differentiate between multiple types of
devices (for example, sensors or lights).
This command can optionally be included in network discovery responses by setting bit 1 of NO.

Parameter range
0 - 0xFFFFFFFF

Default
0x130000

NT (Node Discover Timeout)
Sets the amount of time a base node waits for responses from other nodes when using the ND
(Network Discover) and DN (Discover Node) commands. When a discovery is performed, the broadcast
transmission includes the NT value to provide all remote devices with a response timeout. Remote
devices wait a random time, less than NT, before sending their response to avoid collisions.

Parameter range
0x1 - 0xFC (x 100 ms)

Default
0x19 (2.5 seconds)

NO (Network Discovery Options)
Use NO to suppress or include a self-response to ND (Node Discover) commands. When NO bit 1 is set,
a device performing a Node Discover includes a response entry for itself.

AT commands Discovery commands

Digi XBee® 3 802.15.4 RF Module User Guide 133

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Parameter range
0 - 1

Default
0x0

ND (Network Discover)
This command reports the following information after a jittered time delay. Node discover response
when issued in Commandmode:

MY<CR> (2 bytes) (always 0xFFFE)
SH<CR> (4 bytes)
SL<CR> (4 bytes)
DB<CR> (Contains the detected signal strength of the response in negative dBm units)
NI <CR> (variable, 0-20 bytes plus 0x00 character)
PARENT_NETWORK ADDRESS<CR> (2 bytes)
DEVICE_TYPE<CR> (1 byte: 0 = Coordinator, 1 = Router, 2 = End Device)
STATUS<CR> (1 byte: reserved)
PROFILE_ID<CR> (2 bytes)
MANUFACTURER_ID<CR> (2 bytes)
DIGI DEVICE TYPE<CR> (4 bytes. Optionally included based on NO settings.)
RSSI OF LAST HOP<CR> (1 byte. Optionally included based on NO settings.)

A second carriage return indicates the network discovery timeout (NT) has expired.
When operating in API mode and a Network Discovery is issued as a 0x08 or 0x09 frame, the response
contains binary data except for the NI string in the following format:

2 bytes for Short Source Address
4 bytes for Upper Long Address
4 bytes for Lower Long Address
1 byte for the signal strength in -dBm (two's complement representation)
NULL-terminated string for NI (Node Identifier) value (maximum 20 bytes without NULL
terminator)

Each device that responds to the request will generate a separate Description.
Broadcast an ND command to the network. If the command includes an optional node identifier string
parameter, only those devices with a matching NI string respond without a random offset delay. If the
command does not include a node identifier string parameter, all devices respond with a random
offset delay. If there are no matching devices to the string identifier parameter, the command returns
an “ERROR” if the device is in Transparent mode.
The NT setting determines the maximum timeout (13 seconds by default), this value is sent along with
the discovery broadcast and determines the random delay the remote nodes use to prevent the
responses from colliding.
For more information about the options that affect the behavior of the ND command, see NO
(Network Discovery Options).

AT commands Discovery commands

Digi XBee® 3 802.15.4 RF Module User Guide 134

WARNING! If the NT setting is small relative to the number of devices on the network,
responses may be lost due to channel congestion. Regardless of the NT setting, because
the random offset only mitigates transmission collisions, getting responses from all devices
in the network is not guaranteed.

The ND command cannot be issued from within MicroPython or over BLE.

Parameter range
20-byte printable ASCII string (optional)

Default
N/A

DN (Discover Node)
Resolves an NI (Node identifier) string to a physical address (case sensitive).
The DN command cannot be issued from within MicroPython or over BLE.
The following events occur after DN discovers the destination node:
When DN is sent in Commandmode:

1. The device sets DL and DH to the address of the device with the matching NI string.
2. The receiving device returns OK (or ERROR).
3. The device exits Commandmode to allow for immediate communication. If an ERROR is

received, then Commandmode does not exit.

When DN is sent as a local AT Command API frame:

1. The receiving device returns the 16-bit network and 64-bit extended addresses in an API
Command Response frame.

2. If there is no response from a module within (NT* 100) milliseconds or you do not specify a
parameter (by leaving it blank), the receiving device returns an ERROR message. In the case of
an ERROR, the device does not exit Commandmode. Set the radius of the DN command using
the BH command.

When DN is sent as a local Local AT Command Request - 0x08:

1. The receiving device returns a success response in a Description.
2. If there is no response from a module within (NT * 100) milliseconds or you do not specify a

parameter (by leaving it blank), the receiving device returns an ERROR message.

Parameter range
20-byte ASCII string

Default
N/A

AS (Active Scan)
Sends a Beacon Request to a Broadcast address (0xFFFF) and Broadcast PAN (0xFFFF) on every
channel in the scan channel mask—SC (Scan Channels). Active Scan can only be performed locally and

AT commands Discovery commands

Digi XBee® 3 802.15.4 RF Module User Guide 135

returns an ERROR if attempted remotely.
The AS command cannot be issued from within MicroPython or over BLE.
A PanDescriptor is created and returned for every Beacon received from the scan. Each PanDescriptor
contains the following information:
CoordAddress (SH + SL parameters)<CR>

Note If MY on the coordinator is set less than 0xFFFF, the MY value is displayed.

CoordPanID (ID parameter)<CR>
CoordAddrMode <CR>

0x02 = 16-bit Short Address
0x03 = 64-bit Long Address

Channel (CH parameter) <CR>
SecurityUse<CR>
ACLEntry<CR>
SecurityFailure<CR>
SuperFrameSpec<CR> (2 bytes):

bit 15 - Association Permitted (MSB)
bit 14 - PAN Coordinator
bit 13 - Reserved
bit 12 - Battery Life Extension
bits 8-11 - Final CAP Slot
bits 4-7 - Superframe Order
bits 0-3 - Beacon Order

GtsPermit<CR>
RSSI<CR> (- RSSI is returned as -dBm)
TimeStamp<CR> (3 bytes)
<CR> (A carriage return indicates the end of the PanDescriptor)
The Active Scan returns one PanDescriptor response per discovered network. Each PanDescriptor has
a trailing carriage return <CR> to indicate the end of the frame. The sequence of PanDescriptors has a
final trailing carriage return (three <CR> in sequence indicate the end of the active scan).
If using API Mode, no <CR>’s are returned and a separate response frame is generated for each
PanDescriptor. For more information, see Operate in API mode. If no PANs are discovered during the
scan, only one carriage return is printed.
The AS command cannot be issued from within MicroPython or over BLE.
Before a device is associated to a network (AI != 0), it will continuously perform an active scan in the
background, searching for a valid network to join. While this is occurring, you cannot manually perform
an active scan using the AS command. You can bypass this restriction by setting DJ to 1. This will
disable joining and halt the background active scans.

Parameter range
N/A

Default
N/A

AT commands Coordinator/End Device configuration commands

Digi XBee® 3 802.15.4 RF Module User Guide 136

Coordinator/End Device configuration commands
The following commands configure the device for a master/slave 802.15.4 network.

CE (Device Role)
The default configuration for an XBee 3 802.15.4 network to operate in a Peer-to-Peer configuration.
In a Peer-to-Peer network, every device must have a preconfigured network PAN ID and RF Channel in
order to communicate.
In a Peer-to-Peer network, setting CE to 1 configures the device to act as an indirect messaging
coordinator if SP is non-zero.
The XBee 3 802.15.4 network can also be configured for Master/Slave operation. This is enabled by
setting bit 2 of the A1 (End Device Association) or A2 (Coordinator Association) commands and setting
CE accordingly. The configuration of the of the master/slave network is determined by the A1 and A2
commands. A network coordinator can also act as an indirect messaging coordinator if SP is non-zero.
End Devices configured for cyclic sleep will use DP (Disassociated Cyclic Sleep Period) instead of SP
(Cyclic Sleep Period) until it associates with a coordinator.

Parameter range
0 - 1

Parameter Description

0 Peer-to-Peer / Network End Device

1 Network/Indirect Messaging Coordinator

Default
0

Note If CE = 1 and SP is not 0, then all messages are sent indirectly. See Direct and indirect
transmission for more information.

A1 (End Device Association)
Sets or displays the End Device association options. These options are only applicable when configured
as an End Device by setting CE (Device Role) to 0.
Bit 2 must be set before other options are enabled.

Parameter range
0 - 0x0F (bit field)
Bit field:

Bit Meaning Setting Description

0 Allow PanId
reassignment

0 Only associates with Coordinator operating on PAN ID that matches
device ID.

1 May associate with Coordinator operating on any PAN ID.

AT commands Coordinator/End Device configuration commands

Digi XBee® 3 802.15.4 RF Module User Guide 137

Bit Meaning Setting Description

1 Allow
Channel
reassignment

0 Only associates with Coordinator operating onmatching CH channel
setting.

1 May associate with Coordinator operating on any channel defined in
the SC (Scan Channels) mask.

2 Auto
Associate

0 Peer-to-Peer operation - Device will not attempt association.

1 Network End Device - Device attempts association until success. If
configured for cyclic sleep, DP (Disassociated Cyclic Sleep Period) is
used instead of SP (Cyclic Sleep Period) until the device associates.

3 Poll
coordinator
on pin wake

0 Pin Wake does not poll the Coordinator for indirect (pending) data.

1 Pin Wake sends Poll Request to Coordinator to extract any pending
data.

4 -
7

Reserved

Default
0

A2 (Coordinator Association)
Sets or displays the Coordinator association options. These options are only applicable when
configured as a coordinator by setting CE (Device Role) to 1. Bit 2 must be set before other options are
enabled.

Parameter range
0 - 7 (bit field)
Bit field:

Bit Meaning Setting Description

0 Allow Pan ID
reassignment

0 Coordinator will not perform Active Scan to locate available PAN ID. It
operates on ID (PAN ID).

1 Coordinator performs an Active Scan to determine an available ID
(PAN ID). If a PAN ID conflict is found, the ID parameter will change.

1 Allow
Channel
reassignment

0 Coordinator will not perform Energy Scan to determine free channel.
It operates on the channel determined by the CH parameter.

1 Coordinator performs an Energy Scan to find the quietest channel out
of the channels to be scanned determined by the SC parameter. The
Coordinator then operates on that channel.

2 Allow
Association

0 Peer-to-Peer - Will not allow any devices to associate to it.

1 Network Coordinator - Allows devices to associate to it.

3 -
7

Reserved

AT commands Coordinator/End Device configuration commands

Digi XBee® 3 802.15.4 RF Module User Guide 138

Default
0

SC (Scan Channels)
Sets or displays the list of channels to scan for all Active and Energy Scans as a bit field. This affects
scans initiated in AS (Active Scan) and ED (Energy Detect) commands in Commandmode and during
End Device Association and Coordinator startup.

Parameter range
0 - 0xFFFF (bit field)

Note A parameter of 0 will scan on the current channel configured by CH.

Bit field mask:

Bit IEEE 802.15.4 Channel Frequency (GHz)

0 11 (0x0B) 2.405

1 12 (0x0C) 2.410

2 13 (0x0D) 2.415

3 14 (0x0E) 2.420

4 15 (0x0F) 2.425

5 16 (0x10) 2.430

6 17 (0x11) 2.435

7 18 (0x12) 2.440

8 19 (0x13) 2.445

9 20 (0x14) 2.450

10 21 (0x15) 2.455

11 22 (0x16) 2.460

12 23 (0x17) 2.465

13 24 (0x18) 2.470

14 25 (0x19) 2.475

15 26 (0x1A) 2.480

Note Avoid channel 26 if possible, as the output power is capped at +8 dBm on the Pro variant.

Default
0xFFFF

AT commands Coordinator/End Device configuration commands

Digi XBee® 3 802.15.4 RF Module User Guide 139

SD (Scan Duration)
Sets or displays the scan duration exponent.
Scan Time is measured as:

([# of channels to scan] * (2 ^SD) * 15.36 ms) + (38 ms * [# of channels to scan]) + 20 ms
Use the SC (Scan Channels) command to set the number of channels to scan.

Example
The following table shows the results for a thirteen channel scan.

SD setting Time

0x0 0.18 s

0x2 0.74 s

0x4 2.95 s

0x6 11.80 s

0x8 47.19 s

0xA 3.15 min

0xB 12.58 min

0xE 50.33 min

Parameter range
0 - 0x0F (exponent)

Default
4

DA (Force Disassociation)
Causes the End Device to immediately disassociate from a Coordinator (if associated) and re-attempt
to associate.

Parameter range
N/A

Default
N/A

AI (Association Indication)
Reads the Association status code to monitor association progress.
The following table provides the status codes and their meanings.

AT commands 802.15.4 Addressing commands

Digi XBee® 3 802.15.4 RF Module User Guide 140

Status
code Meaning

0x00 Coordinator successfully started, End device successfully associated, or operating in peer
to peer mode where no association is needed.

0x03 Active Scan found a PAN coordinator, but it isn't currently accepting associations.

0x05 Active Scan found a PAN, but the PAN ID doesn't match the configured PAN ID on the
requesting end device and bit 0 of A1 is not set to allow reassignment of PAN ID.

0x06 Active Scan found a PAN on a channel that does not match the configured channel on the
requesting end device and bit 1 of A1 is not set to allow reassignment of the channel.

0x0C Association request failed to get a response.

0x13 End device is disassociated or is in the process of disassociating.

0xFF Initialization time; no association status has been determined yet.

Parameter range
0 - 0xFF [read-only]

Default
N/A

802.15.4 Addressing commands
The following commands affect how outgoing 802.15.4 transmissions are addressed and configured.

SH (Serial Number High)
Displays the upper 32 bits of the unique IEEE 64-bit extended address assigned to the XBee in the
factory.
This value is read-only and it never changes.

Parameter range
0x0013A200 - 0x0013A2FF [read-only]

Default
Set in the factory

SL (Serial Number Low)
Displays the lower 32 bits of the unique IEEE 64-bit RF extended address assigned to the XBee in the
factory.
This value is read-only and it never changes.

Parameter range
0 - 0xFFFFFFFF [read-only]

Default
Set in the factory

AT commands 802.15.4 Addressing commands

Digi XBee® 3 802.15.4 RF Module User Guide 141

MY (16-bit Source Address)
Sets or displays the device's 16-bit source address. Set MY = 0xFFFE to disable reception of packets
with 16-bit addresses. To maintain compatibility with older products, 0xFFFF is also acceptable to
disable the reception of packets with 16-bit addresses. When configured in this way, the 64-bit long
source address (SH+SL) is used for outgoing messages.
Regardless of MY, messages addressed to the 64-bit long address of the device are always delivered.

Parameter range
0 - 0xFFFF

Default
0

DH (Destination Address High)
Set or read the upper 32 bits of the 64-bit destination address.
When you combine DH with DL, it defines the 64-bit destination address that the device uses for
outgoing data transmissions in Transparent mode (AP = 0) and I/O sampling. This destination address
corresponds to the serial number (SH + SL) of the target device.
To transmit using a 16-bit address, set DH to 0 and DL less than 0xFFFF. When associating to a
coordinator as an end device (CE = 0, A1 | 0x04), the destination address is automatically set to
address the coordinator.
Reserved 802.15.4 network addresses:

n 0x000000000000FFFF is a broadcast address (DH = 0, DL = 0xFFFF).

Parameter range
0 - 0xFFFFFFFF

Default
0

DL (Destination Address Low)
Set or read the lower 32 bits of the 64-bit destination address.
When you combine DH with DL, it defines the 64-bit destination address that the device uses for
outgoing data transmissions in Transparent mode (AP = 0) and I/O sampling. This destination address
corresponds to the serial number (SH + SL) of the target device.
To transmit using a 16-bit address, set DH to 0 and DL less than 0xFFFF. When associating to a
coordinator as an end device (CE = 0, A1 | 0x04), the destination address is automatically set to
address the coordinator.
Reserved 802.15.4 network addresses:

n 0x000000000000FFFF is a broadcast address (DH = 0, DL = 0xFFFF).

Parameter range
0 - 0xFFFFFFFF

Default
0

AT commands 802.15.4 Addressing commands

Digi XBee® 3 802.15.4 RF Module User Guide 142

RR (XBee Retries)
Set or reads the number of application-layer retries the device executes. Application-layer retries are
only enabled if a Digi header is present via the MM command.
Every transmitted unicast transmission uses up to five MAC-Layer retries (if enabled via the MM
command). If RR > 0, a failed unicast transmission will be attempted RR times (each application-layer
retry will exhaust the five MAC-layer retries).
When transmitting a broadcast message, if RR = 0, only one packet is broadcast. If RR is > 0, then RR +
2 packets are sent on each broadcast. No acknowledgments are returned on a broadcast.
The RR value does not need to be set on all devices for retries to work. If retries are enabled, the
transmitting device sets a bit in the Digi RF Packet header that requests the receiving device to send
an ACK. Each device retry can potentially result in the MAC sending the packet six times (one try plus
five retries).

Parameter range
0 - 6

Default
0

TO (Transmit Options)
A bitfield that configures the advanced options used for outgoing data transmissions from a device
operating in Transparent mode (AP = 0).
When operating in API mode, if the Transmit Options field in the API frame is 0, the TO parameter
value will be used instead.

Parameter range
0 - 0xFF

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Meaning

0 Disable MAC acknowledgments (retries) for unicast traffic.

2 Send to broadcast PAN ID.

4 Send data securely—requires secure session be established with destination. Enabling this bit
will reduce maximum payload size by 4 bytes.

Default
0

NP (Maximum Packet Payload Bytes)
Reads the maximum number of RF payload bytes that you can typically send in a transmission based
on current parameter settings. Some options may impact maximum payload size that are not
captured by the NP value.
See Maximum payload for more information.

AT commands Security commands

Digi XBee® 3 802.15.4 RF Module User Guide 143

NP is based onmultiple factors including the length of the source address, the length of the
destination address, the length of the APP header, and whether or not encryption is enabled.
For the purposes of this command, it always assumes a long destination address. This means that if
you select a short destination address, you will be able to send up to NP + 6 bytes in a single packet.

Note NP returns a hexadecimal value. For example, if NP returns 0x66, this is equivalent to 102 bytes.

Parameter range
0 - 0xFF [read-only]

Default
N/A

Security commands
The following commands enable and control the encryption used for RF transmissions.

EE (Encryption Enable)
Enables or disables 128-bit Advanced Encryption Standard (AES) encryption of RD data transmissions.
The firmware uses the 802.15.4 Default Security protocol and uses AES encryption with a 128-bit key.
AES encryption dictates that all devices in the network use the same key, and that the maximum RF
packet size is 95 bytes if Tx compatibility is enabled (you set bit 0 of C8). If C8, bit 0 is not set, see
Maximum payload.
When encryption is enabled, the device always uses its 64-bit long address as the source address for
RF packets. This does not affect how the MY (Source Address), DH (Destination Address High) and DL
(Destination Address Low) parameters work.
If MM (MAC Mode) is set to 1 or 2 and AP (API Enable) parameter > 0:

With encryption enabled and a 16-bit short address set, receiving devices can only issue RX
(Receive) 64-bit indicators. This is not an issue whenMM = 0 or 3.

If a device with a non-matching key detects RF data, but has an incorrect key:
When encryption is enabled, non-encrypted RF packets received are rejected and are not sent
out the UART.

Parameter range
0 - 1

Parameter Description

0 Encryption Disabled

1 Encryption Enabled

Default
0

KY (AES Encryption Key)
Sets the 128-bit network security key value that the device uses for encryption and decryption.

AT commands Security commands

Digi XBee® 3 802.15.4 RF Module User Guide 144

This command is write-only and cannot be read. If you attempt to read KY, the device returns anOK
status.
Set this command parameter the same on all devices in a network.
The entire payload of the packet is encrypted using the key and the CRC is computed across the
ciphertext.

Parameter range
128-bit value (up to 16 bytes)

Default
0

DM (Disable Features)

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:
A bit field mask that you can use to enable or disable specific features.
If disabling device functionality for security purposes, we recommend that you also enable secure
remote configuration to prevent features from being re-enabled remotely.

Bit Description

0 Reserved

1 Reserved

2 Disable firmware over-the-air (FOTA) updates.
When set to 1, the device cannot act as a FOTA update client. FOTA File System access is
protected with FK (File System Public Key).

Note Serial firmware updates are always possible via the bootloader.

3 Disable SRP authentication on the client side of the connection.

4 Disable SRP authentication on the server side of the connection.

Parameter range
0, 4 - 0x1F (bit field)

Default
0

US (OTA Upgrade Server)
Specifies the 64-bit address of the server the device should use for OTA upgrades.

n 0: Accept OTA upgrades from any device
n 0x1-0xFFFFFFFFFFFFFFFE: Only accept OTA upgrades from a server with the given 64-bit

address
n 0xFFFFFFFFFFFFFFFF: Reserved

AT commands Secure Session commands

Digi XBee® 3 802.15.4 RF Module User Guide 145

Note If this parameter is not 0, packets from the OTA server must be sent with 64-bit addressing. This
is done by setting MY to 0xFFFE.

Parameter range
0 - 0xFFFFFFFFFFFFFFFE

Default
0

Secure Session commands
These are the AT commands that enable Secure Session.

SA (Secure Access)
The Secure Access Options bit-field defines the feature set(s) intended to be secure against
unauthorized access. The XBee 3 802.15.4 RF Module should establish a secure session in order to
access functionality defined by the feature set(s) on the local device.
A passwordmust be set using the Secure Session Salt and Verifier before access is secured.

Parameter range
0 - 0x1F (up to 0xFFFF)

Bit field
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Description

0 Reserved

1 Remote AT Commands
When set to 1 and if a password has been set, the device will not respond to insecure Remote
AT Command requests (API Frame 0x17) but still can send insecure Remote AT Commands.

2 Serial Data
When set to 1, the device will not emit any serial data that was sent insecurely.
This functionality applies to devices that are configured for Transparent mode, but in this
instance, only the SRP server would be AP = 0, the client would still have to send the Secure
Session Control - 0x2E via API mode. The server will also not emit any 0x90 or 0x91 frames
when this bit is set.

Note On 802.15.4 insecure 0x80 frames will also not be emitted.

Default
0

*S (Secure Session Salt)
The Secure Remote Password (SRP) Salt is a 32-bit number used to create an encrypted password for
the XBee 3 802.15.4 RF Module. The *S command contains the salt value in the salt/verifier pair used

AT commands RF interfacing commands

Digi XBee® 3 802.15.4 RF Module User Guide 146

for secure session authentication.

Parameter range
0-FFFFFFFF

Default
0

*V, *W, *X, *Y (Secure Session Verifier)
The secure session verifier is a 128-byte value used together with *S (Secure Session Salt) for secure
session authentication. The *V, *W, *X, and *Y commands each contain 32 bytes of the secure session
verifier: *V contains bytes 0 - 31, *W bytes 32 - 63, *X bytes 54 - 95, and *Y bytes 96 - 127.

Parameter range
Each command can be any 32-byte value: 0-FFFFFFFF

Default
0

RF interfacing commands
The following AT commands affect the 2.4 GHz 802.15.4 RF interface of the device.

PL (TX Power Level)
Sets or displays the power level at which the device transmits conducted power for 802.15.4 traffic.

Note If operating on channel 26 (CH = 0x1A), output power will be capped and cannot exceed 8 dBm
regardless of the PL setting.

Parameter range
0 - 4

Parameter XBee non-PRO XBee 3 PRO

0 -5 dBm -5 dBm

1 -1 dBm +3 dBm

2 +2 dBm +8 dBm

3 +5 dBm +15 dBm

4 +8 dBm +19 dBm

Default
4

AT commands RF interfacing commands

Digi XBee® 3 802.15.4 RF Module User Guide 147

PP (Output Power in dBm)
Display the operating output power based on the current configuration (channel and PL setting). The
values returned are in dBm, with negative values represented in two's complement; for example:
-5 dBm = 0xFB.

Parameter range
0 - 0xFF [read-only]

Default
N/A

CA (CCA Threshold)
Defines the Clear Channel Assessment (CCA) threshold. Prior to transmitting a packet, the device
performs a CCA to detect energy on the channel. If the device detects energy above the CCA
threshold, it will not transmit the packet.
The CA parameter is measured in units of -dBm. The CCA threshold is set upon device initialization,
any change to the CCA threshold must be written to flash with the WR command and the module
reset (power cycle or FR command) before the new threshold is observed.
You can set CA to 0 to disable CCA; this can improve latency but may cause interference with other 2.4
GHz devices when transmitting.

Parameter range
0 (disabled), 0x28 - 0x64 (-dBm)

Default
0x41

RN (Random Delay Slots)
Defines the minimum value of the back-off exponent in the CSMA-CA algorithm. The Carrier Sense
Multiple Access - Collision Avoidance (CSMA-CA) algorithm was engineered for collision avoidance
(random delays are inserted to prevent data loss caused by data collisions.
If RN = 0, there is no delay between a request to transmit and the first iteration of CSMA-CA.
Unlike CSMA-CD, which reacts to network transmissions after collisions have been detected, CSMA-CA
acts to prevent data collisions before they occur. As soon as a device receives a packet that is to be
transmitted, it checks if the channel is clear (no other device is transmitting). If the channel is clear,
the packet is sent over-the-air. If the channel is not clear, the device waits for a randomly selected
period of time, then checks again to see if the channel is clear. After a time, the process ends and the
data is lost.

Parameter range
0 - 5 (exponent)

Default
0

AT commands MAC diagnostics commands

Digi XBee® 3 802.15.4 RF Module User Guide 148

MAC diagnostics commands
The following commands provide Media Access Control diagnostic information.

DB (Last Packet RSSI)
Reports the RSSI in -dBm of the last received RF data packet. DB returns a hexadecimal value for the
-dBmmeasurement.
For example, if DB returns 0x60, then the RSSI of the last packet received was -96 dBm.
If the XBee 3 802.15.4 RF Module has been reset and has not yet received a packet, DB reports 0.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFF [read-only]

Default
N/A

EA (ACK Failures)
The number of unicast transmissions that time out awaiting a MAC ACK. This can be up to RR +1
timeouts per unicast when RR > 0.
This count increments whenever a MAC ACK timeout occurs on a MAC-level unicast. When the number
reaches 0xFFFF, the firmware does not count further events.
To reset the counter to any 16-bit unsigned value, append a hexadecimal parameter to the command.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
0x0

EC (CCA Failures)
Sets or displays the number of frames that were blocked and not sent due to CCA failures or
receptions in progress. If CCA is disabled (CA is 0), then this count only increments for frames that are
blocked due to receive in progress. When this count reaches its maximum value of 0xFFFF, it stops
counting.
You can reset EC to 0 (or any other value) at any time to make it easier to track errors. This value is
volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
0x0

AT commands Sleep settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 149

ED (Energy Detect)
Starts an energy detect scan. The device loops through all the available channels and returns the
maximal energy on each channel, a comma follows each value, and the list ends with a carriage
return. The values returned reflect the energy level that ED detects in -dBm units.
ED accepts a parameter value but it will not affect the scan duration or results. ED cannot be issued
from within MicroPython or over BLE.

Parameter range
0 - 0xFF

Default
N/A

Sleep settings commands
The following commands enable and configure the low power sleepmodes of the device.

SM (Sleep Mode)
Sets or displays the sleepmode of the device.
By default, Sleep Modes are disabled (SM = 0) and the device remains in Idle/Receive mode. When in
this state, the device is constantly ready to respond to either serial or RF activity.
When operating in Pin Sleep (SM = 1), D8 (DIO8/DTR/SLP_Request Configuration) must be set as a
peripheral (D8=1) in order for the device to sleep.

Parameter range
0 - 5

Parameter Description

0 No sleep (disabled)

1 Pin sleep

2 Reserved

3 Reserved

4 Cyclic Sleep Remote

5 Cyclic Sleep Remote with pin wakeup

6 MicroPython sleep (with optional pin wake). For complete details see the Digi
MicroPython Programming Guide.

Default
0

SP (Cyclic Sleep Period)
Sets and reads the duration of time that a remote device sleeps. After the cyclic sleep period is over,
the device wakes and checks for data. If data is not present, the device goes back to sleep. The

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands Sleep settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 150

maximum sleep period is 4 hours (SP = 0x15F900).
The SP parameter is only valid if you configure the end device to operate in Cyclic Sleep (SM = 4-5).
Coordinator and End Device SP values should always be equal.
To send direct messages on a coordinator, set SP = 0. If the device is a coordinator (CE (Device Role) =
1) and SP is not 0, the device sends all transmissions indirectly, meaning end devices have to poll the
coordinator to receive data—FP (Force Poll) or using cyclic sleep.
End Device: SP determines the sleep period for cyclic sleeping remotes. The maximum sleep period is
4 hours (0x15F900).
Coordinator: If non-zero, SP determines the time to hold an indirect message before discarding it. A
Coordinator discards indirect messages after a period of (2.5 * SP, or 65 seconds, whichever is
smaller).

Parameter range
0x0 - 0x15F900 (x 10 ms) (4 hours)

Default
0x0

ST (Cyclic Sleep Wake Time)
Sets or displays the wake time of the device.
The ST parameter is only valid for end devices configured with Cyclic Sleep settings (SM = 4 - 5) and for
coordinators. Upon waking the device polls for queued indirect messages and UART data. If it does not
detect activity, the device immediately sleeps. The device only stays awake for ST time if RF or UART
activity is detected upon wakeup or bit 8 of SO (Sleep Options) is set to 1.
Coordinator and End Device ST values must be equal.

Parameter range
0x1 - 0x36EE80 (x 1 ms)

Default
0x7D0 (2 seconds)

DP (Disassociated Cyclic Sleep Period)
Sets or displays the sleep period for cyclic sleeping remotes that are configured for Association but
that are not associated to a Coordinator. For example, if a device is configured to associate and is
configured as a Cyclic Sleep remote, but does not find a Coordinator, it sleeps for DP time before
reattempting association.

Parameter range
1 - 0x15F900 (x 10 ms)

Default
0x3E8 (10 seconds)

SN (Number of Sleep Periods)
Set or read the number of sleep periods value. This command controls the number of sleep periods
that must elapse between assertions of the ON_SLEEP line during the wake time if no RF data is

AT commands Sleep settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 151

waiting for the end device. This command allows a host application to sleep for an extended time if no
RF data is present.

Parameter range
1 - 0xFFFF

Default
1

SO (Sleep Options)
A bitfield that contains advanced sleep options that do not have dedicated AT commands.

Parameter range
0 - 0x103

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Setting Meaning Description

0 0 Normal
operations

A device configured for cyclic sleep will poll for data on waking

1 Disable wakeup
poll

A device configured for cyclic sleep will not poll for data on waking

1 0 Normal
operations

A device configured in a sleepmode with ADC/DIO sampling
enabled will automatically perform a sampling on wakeup

1 Suppress
sample on
wakeup

A device configured in a sleepmode with ADC/DIO sampling
enabled will not automatically sample on wakeup

8 0 Normal
operations

A device configured for cyclic sleep will wake only momentarily
after the expiration of SP

1 Always wake
for ST time

A device configured for cyclic sleep will always remain awake for ST
time before returning to sleep

Default
0

FP (Force Poll)
The FP command is deferred until changes are applied. This prevents indirect messages from arriving
at the end device while it is operating in Commandmode.

Parameter range
N/A

Default
N/A

AT commands MicroPython commands

Digi XBee® 3 802.15.4 RF Module User Guide 152

MicroPython commands
The following commands relate to using MicroPython on the XBee 3 802.15.4 RF Module.

PS (Python Startup)
Sets whether or not the XBee 3 802.15.4 RF Module runs the stored Python code at startup.

Range
0 - 1

Parameter Description

0 Do not run stored Python code at startup.

1 Run stored Python code at startup.

Default
0

PY (MicroPython Command)
Interact with the XBee 3 802.15.4 RF Module using MicroPython. PY is a command with sub-
commands. These sub-commands are arguments to PY.

PYB (Bundled Code Report)
You can store compiled code in flash using the os.bundle() function in the MicroPython REPL; refer to
the Digi MicroPython Programming Guide. The PYB sub-command reports details of the bundled code.
In Commandmode, it returns two lines of text, for example:

bytecode: 619 bytes (hash=0x0900DBCE)
compiled: 2017-05-09T15:49:44

The messages are:

n bytecode: the size of bytecode stored in flash and its 32-bit hash. A size of 0 indicates that
there is no stored code.

n compiled: a compilation timestamp. A timestamp of 2000-01-01T00:00:00 indicates that the
clock was not set during compilation.

In API mode, PYB returns three 32-bit big-endian values:

n bytecode size
n bytecode hash
n timestamp as seconds since 2000-01-01T00:00:00

PYE (Erase Bundled Code)
PYE interrupts any running code, erases any bundled code and then does a soft-reboot on the
MicroPython subsystem.

PYV (Version Report)
Report the MicroPython version.

https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands File System commands

Digi XBee® 3 802.15.4 RF Module User Guide 153

PY^ (Interrupt Program)
Sends KeyboardInterrupt to MicroPython. This is useful if there is a runaway MicroPython program
and you have filled the stdin buffer. You can enter Commandmode (+++) and send ATPY^ to interrupt
the program.

Default
N/A

File System commands
To access the file system, enter Commandmode and use the following commands. All commands
block the AT command processor until completed and only work from Commandmode; they are not
valid for API mode or MicroPython's xbee.atcmd() method. Commands are case-insensitive as are file
and directory names. Optional parameters are shown in square brackets ([]).

FS (File System)
FS is a command with sub-commands. These sub-commands are arguments to FS.

Error responses
If a command succeeds it returns information such as the name of the current working directory or a
list of files, or OK if there is no information to report. If it fails, you see a detailed error message
instead of the typical ERROR response for a failing AT command. The response is a named error code
and a textual description of the error.

Note The exact content of error messages may change in the future. All errors start with a upper case
E, followed by one or more uppercase letters and digits, a space, and an description of the error. If
writing your own AT command parsing code, you can determine if an FS command response is an error
by checking if the first letter of the response is upper case E.

FS (File System)
When sent without any parameters, FS prints a list of supported commands.

FS PWD
Prints the current working directory, which always starts with / and defaults to /flash at startup.

FS CD directory
Changes the current working directory to directory. Prints the current working directory or an error if
unable to change to directory.

FS MD directory
Creates the directory directory. Prints OK if successful or an error if unable to create the requested
directory.

FS LS [directory]
Lists files and directories in the specified directory. The directory parameter is optional and defaults
to a period (.), which represents the current directory. The list ends with a blank line.
Entries start with zero or more spaces, followed by file size or the string <DIR> for directories, then a
single space character and the name of the entry. Directory names end with a forward slash (/) to
differentiate them from files.

AT commands File System commands

Digi XBee® 3 802.15.4 RF Module User Guide 154

<DIR> ./
<DIR> ../
<DIR> lib/

32 test.txt

FS PUT filename
Starts a YMODEM receive on the XBee Smart Modem, storing the received file to filename and
ignoring the filename that appears in block 0 of the YMODEM transfer. The XBee Smart Modem sends
a prompt (Receiving file with YMODEM...) when it is ready to receive, at which point you should
initiate a YMODEM send in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS HASH filename
Print a SHA-256 hash of a file to allow for verification against a local copy of the file. On Windows, you
can generate a SHA-256 hash of a file with the command certutil -hashfile test.txt SHA256. On Mac
and Linux use shasum -b -a 256 test.txt.

FS GET filename
Starts a YMODEM send of filename on the XBee device. When it is ready to send, the XBee Smart
Modem sends a prompt: (Sending file with YMODEM...). When the prompt is sent, you should initiate
a YMODEM receive in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS RM file_or_directory
Removes the file or empty directory specified by file_or_directory. This command fails with an error if
file_or_directory does not exist, is not empty, refers to the current working directory or one of its
parents.

Note Removing a file only reclaims space if the file removed is placed last in the file system. Deleted
data that is contiguous with the last deleted file is also reclaimed. Directories are only reclaimed if all
directories in that particular block of memory are deleted and found at the end of the file system. Use
the ATFS INFO FULL command to see where in the file system files and directories are placed.

FS INFO
Report on the size of the filesystem, showing bytes in use, available, marked bad and total. The report
ends with a blank line, as with most multi-line AT command output. Example output:

204800 used
695296 free

0 bad
900096 total

FS INFO FULL
Reports every file and directory in the order they are placed in the file system along with the amount
of space they take up individually. Also reports deleted space as well as unused directory slots.
Example output:

128 /flash./
128 /flash/lib./
128 /flash/directory./
1664 [unused dir slot(s)]

AT commands Bluetooth Low Energy (BLE) commands

Digi XBee® 3 802.15.4 RF Module User Guide 155

2048 /flash/file1.txt.
2048 [deleted space]
2048 /flash/directory/file2.txt

FS FORMAT confirm
Formats the file system, leaving it with a default directory structure. Pass the word confirm as the
first parameter to confirm the format. The XBee Smart Modem responds with Formatting... when the
format starts, and will print OK followed by a carriage return when it finishes.

FK (File System Public Key)
Configures the device's File System Public Key (all 65-bytes must be entered, including any leading
zeros).
You must set FK locally via Command Mode or 0x08 or 0x09 API frames. You cannot set the public key
remotely.
The 65-byte public key is required to verify that the file system that is downloaded over-the-air is a
valid XBee 3 file system compatible with the 802.15.4 firmware.
For further information, refer to Set the public key on the XBee 3 device.

Parameter range
A valid 65-byte ECDSA public key—all 65-bytes must be entered, including any leading zeros.
Other accepted parameters:
0 = Clear the public key
1 = Returns the upper 48 bytes of the public key
2 = Returns the lower 17 bytes of the public key

Default
0

Note The Default value of 0 indicates that no public key has been set and hence, all file system
updates will be rejected.

Bluetooth Low Energy (BLE) commands
The following AT commands are BLE commands.

BT (Bluetooth Enable)
BT enables or disables the Bluetooth functionality.

Note When Bluetooth is enabled, the XBee 3 802.15.4 RF Module cannot be in Sleepmode. If the
device is configured to allow Sleepmode and you enable Bluetooth, the XBee 3 802.15.4 RF Module
will not enter sleep.

WARNING! RF data loss may be encountered when BLE is enabled due to the PHY
switching between RF and BLE. We highly recommended that you enable retries andmulti-
transmit—via the RR andMT commands—when BLE is enabled.

AT commands Bluetooth Low Energy (BLE) commands

Digi XBee® 3 802.15.4 RF Module User Guide 156

Parameter range

Parameter Description

0 Bluetooth functionality is disabled.

1 Bluetooth functionality is enabled.

Default
0

BL (Bluetooth MAC Address)
BL reports the EUI-48 Bluetooth device address. Due to standard XBee AT Command processing,
leading zeroes are not included in the response when in Commandmode.

Parameter range
N/A

Default
N/A

BI (Bluetooth Identifier)
A human-friendly name for the device. This is the name that will appear in bluetooth advertisement
messages.
If set to default (ASCII space character), the bluetooth indicator will display as XBee3 802.15.4.
If using XBee Mobile, adjustments to the filter options will be needed if this value is populated.

Parameter range
A string of case-sensitive ASCII printable characters from 1 to 22 bytes in length.

Default
0x20 (an ASCII space character)

BP (Bluetooth Power)
Sets the power level for Bluetooth Advertisements. All other BLE transmissions are sent at 8 dBm.

Parameter range

Parameter Description

0 -20 dBm

1 -10 dBm

2 0 dBm

3 8 dBm

AT commands API configuration commmands

Digi XBee® 3 802.15.4 RF Module User Guide 157

Default
3 = 8 dBm

$S (SRP Salt)

Note You should only use this command if you have already configured a password on the XBee device
and the salt corresponds to the password.

The Secure Remote Password (SRP) Salt is a 32-bit number used to create an encrypted password for
the XBee 3 802.15.4 RF Module. Use the $S command in conjunction with the $V, $W, $X, and $Y
verifiers. Together, the command and the verifiers authenticate the client for the BLE API Service
without storing the XBee password on the XBee 3 802.15.4 RF Module.
Configure the salt in the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-byte
verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

Note The XBee 3 802.15.4 RF Module does not allow for 0 to be valid salt. If the value is 0, SRP is
disabled and you are not able to authenticate using Bluetooth.

Parameter range
0 - FFFFFFFF

Default
0

$V, $W, $X, $Y commands (SRP Salt verifier)
Use the $V, $W, $X, and $Y verifiers in conjunction with $S (SRP Salt) to create an encrypted password
for the XBee 3 802.15.4 RF Module. Together, $S and the verifiers authenticate the client for the BLE
API Service without storing the XBee password on the XBee device.
Configure the salt with the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-byte
verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

Parameter range
0 - FFFFFFFF

Default
0

API configuration commmands
The following commands affect how API mode operates.

AP (API Enable)
Set or read the API mode setting. The device can format the RF packets it receives into API frames
and sends them out the serial port.
For more information, see Serial modes.
When you enable API, you must format the serial data as API frames because Transparent operating
mode is disabled.

AT commands API configuration commmands

Digi XBee® 3 802.15.4 RF Module User Guide 158

Parameter range
0 - 2

Parameter Description

0 API disabled (operate in Transparent mode)

1 API enabled

2 API enabled (with escaped control characters)

4 API enabled (operate in Micropython mode)

Default
0

AO (API Output Options)
Configure the serial output and legacy I/O sampling options for received API frames. This parameter is
only applicable when the device is operating in API mode (AP = 1 or 2). AO also affects how I/O
samples are gathered and transmitted. For detailed information on how I/O sampling is handled, see
Legacy support.
For new designs, we recommend AO = 0. This provides API compatibility with DigiMesh and Zigbee
applications and allows for all 15 I/O lines to be sampled (D0 through P4). Incoming serial data
packets will be emitted as Transmit Request - 0x10. All outgoing I/O samples will be sent as I/O
Sample Indicator - 0x92.
When AO is set to 2, I/O samples are transmitted in a legacy format that are compatible with legacy
S1 and S2C 802.15.4 XBee devcies. As a result, only 9 I/O lines are available (D0 through D8) for
sampling. Incoming data packets will be emitted as either 0x81 or 0x82 frames depending on the
addressing scheme of the sender. All outgoing I/O samples will be sent as 0x82 or 0x83 frames
depending on the addressing scheme of the sender.

Parameter range
0 - 2

Parameter Description

0 API Rx Indicator - 0x90, this is for standard data frames.

1 API Explicit Rx Indicator - 0x91, this is for Explicit Addressing data frames.

2 Legacy 802.15.4 API Indicator - 0x80/0x81. Also restricts the Digital Input sampling to
D0 through D8 and allows for OTA compatibility with legacy S1 and S2C devices.

Default
2

AZ (Extended API Options)
Optionally output additional ZCLmessages that would normally be masked by the XBee application.
Use this when debugging FOTA updates by enabling client-side messages to be sent out of the serial
port.

AT commands UART interface commands

Digi XBee® 3 802.15.4 RF Module User Guide 159

The bits in this parameter are used to enable different kinds of normally-suppressed output:

Parameter range
0x00 - 0x0A (bitfield)
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Description

0 Reserved

1 Output receive frames for FOTA update commands

2 Reserved

3 Output Extended Modem Status (0x98) frames instead of Modem Status (0x8A) frames when a
Secure Session status change occurs

Default
0

UART interface commands
The following commands affect the UART serial interface.

BD (UART Baud Rate)
This command configures the serial interface baud rate for communication between the UART port of
the device and the host.
The device interprets any value between 0x12C and 0x0EC400 as a custom baud rate. Custom baud
rates are not guaranteed and the device attempts to find the closest achievable baud rate. After
setting a non-standard baud rate, query BD to find the actual operating baud rate before applying
changes.

Parameter range
Standard baud rates: 0x0 - 0x0A
Non-standard baud rates: 0x12C - 0x0EC400

Parameter Description

0x0 1200 b/s

0x1 2400 b/s

0x2 4800 b/s

0x3 9600 b/s

0x4 19200 b/s

0x5 38400 b/s

0x6 57600 b/s

AT commands UART interface commands

Digi XBee® 3 802.15.4 RF Module User Guide 160

Parameter Description

0x7 115200 b/s

0x8 230,400 b/s

0x9 460,800 b/s

0xA 921,600 b/s

Default
3 (9600 baud)

NB (Parity)
Set or read the serial parity settings for UART communications.
The device does not actually calculate and check the parity. It only interfaces with devices at the
configured parity and stop bit settings for serial error detection.

Parameter range
0 - 2

Parameter Description

0 No parity

1 Even parity

2 Odd parity

Default
0

SB (Stop Bits)
Sets or displays the number of stop bits for UART communications.

Parameter range
0 - 1

Parameter Description

0 One stop bit

1 Two stop bits

Default
0

FT (Flow Control Threshold)
Set or display the flow control threshold.

AT commands AT Command options

Digi XBee® 3 802.15.4 RF Module User Guide 161

The device de-asserts CTS when FT bytes are in the UART receive buffer. It re-asserts CTS when
somewhat less than FT bytes are in the UART receive buffer. "Somewhat less than" allows for
hysteresis so that CTS is not toggling rapidly when close to FT bytes are in the UART receive buffer.

Parameter range
0x20 - 0x1B0 bytes

Default
0x158

RO (Packetization Timeout)
Set or read the number of character times of inter-character silence required before transmission
begins when operating in Transparent mode. A “character time” is the amount of time it takes to
send a single ASCII character at the operating baud rate (BD).
Set RO to 0 to transmit characters as they arrive instead of buffering them into one RF packet.
The RO command only applies to Transparent mode, it does not apply to API mode.

Parameter range
0 - 0xFF (x character times)

Default
3

AT Command options
The following commands affect how Commandmode operates.

CC (Command Character)
Sets or displays the character value used to break from data mode to Commandmode. The command
character must be sent three times in succession while observing the minimum guard time (GT) of
silence before and after this sequence.
The default value (0x2B) is the ASCII code for the plus (+) character. You must enter it three times
within the guard time to enter Commandmode. To enter Commandmode, there is also a required
period of silence before and after the command sequence characters of the Commandmode
sequence (GT + CC + GT). The period of silence prevents inadvertently entering Commandmode. For
more information, see Enter Commandmode.

Parameter range
0 - 0xFF
Recommended: 0x20 - 0x7F (ASCII)

Default
0x2B (the ASCII plus character: +)

CT (Command Mode Timeout)
Sets or displays the Commandmode timeout parameter. If the local device enters Commandmode
and does not receive any valid AT commands within this time period, Commandmode silently exits.

AT commands UART pin configuration commands

Digi XBee® 3 802.15.4 RF Module User Guide 162

Parameter range
2 - 0x1770 (x 100 ms)

Default
0x64 (10 seconds)

GT (Guard Times)
Set the required period of silence before and after the command sequence characters of the
Commandmode sequence, GT + CC + GT. The period of silence prevents inadvertently entering
Commandmode if a data stream in Transparent mode includes the CC character. For more
information, see Enter Commandmode.

Parameter range
0x2 - 0x6D3 (x 1 ms)

Default
0x3E8 (one second)

CN (Exit Command mode)
Executable command. CN immediately exits Commandmode and applies pending changes.

Parameter range
N/A

Default
N/A

UART pin configuration commands
The following commands are related to pin configuration for the UART interface.

D6 (DIO6/RTS Configuration)
Sets or displays the DIO6/RTS configuration (Micro pin 27/SMT pin 29/TH pin 16).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 RTS flow control

2 N/A

3 Digital input

AT commands UART pin configuration commands

Digi XBee® 3 802.15.4 RF Module User Guide 163

Parameter Description

4 Digital output, low

5 Digital output, high

Default
0

D7 (DIO7/CTS Configuration)
Sets or displays the DIO7/CTS configuration (Micro pin 24/SMT pin 25/TH pin 12).

Parameter range
0, 1, 3 - 7

Parameter Description

0 Disabled

1 CTS flow control

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

6 RS-485 enable, low Tx (0 V on transmit, high when idle)

7 RS-485 enable, high Tx (high on transmit, 0 V when idle)

Default
1

P3 (DIO13/UART_DOUT Configuration)
Sets or displays the DIO13/UART_DOUT configuration (Micro pin 3/SMT pin 3/TH pin 2).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 UART DOUT

2 N/A

3 Digital input

AT commands SMT/MMT SPI interface commands

Digi XBee® 3 802.15.4 RF Module User Guide 164

Parameter Description

4 Digital output, low

5 Digital output, high

Default
1

P4 (DIO14/UART_DIN Configuration)
Sets or displays the DIO14/UART_DIN configuration (Micro pin 4/SMT pin 4/TH pin 3).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 UART DIN

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

SMT/MMT SPI interface commands
The following commands affect the SPI serial interface on SMT and MMT variants. These commands
are not applicable to the through-hole variant of the XBee 3; see D1 through D4 and P2 for through-
hole SPI support.

P5 (DIO15/SPI_MISO Configuration)
Sets or displays the DIO15/SPI_MISO configuration (Micro pin 16/SMT pin 17). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

AT commands SMT/MMT SPI interface commands

Digi XBee® 3 802.15.4 RF Module User Guide 165

Parameter Description

1 SPI_MISO

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P6 (DIO16/SPI_MOSI Configuration)
Sets or displays the DIO16/SPI_MOSI configuration (Micro pin 15/SMT pin 16). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_MOSI

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P7 (DIO17/SPI_SSEL Configuration)
Sets or displays the DIO17/SPI_SSEL configuration (Micro pin 14/SMT pin 15). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

AT commands SMT/MMT SPI interface commands

Digi XBee® 3 802.15.4 RF Module User Guide 166

Parameter Description

1 SPI_SSEL

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P8 (DIO18/SPI_CLK Configuration)
Sets or displays the DIO18/SPI_CLK configuration (Micro pin 13/SMT pin 14). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_CLK

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P9 (DIO19/SPI_ATTN Configuration)
Sets or displays the DIO19/SPI_ATTN configuration (Micro pin 11/SMT pin 12). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 167

Parameter Description

1 SPI_ATTN

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

I/O settings commands
The following commands configure the various I/O lines available on the XBee 3 802.15.4 RF Module.

D0 (DIO0/ADC0/Commissioning Configuration)
Sets or displays the DIO0/ADC0/CB configuration (TH pin 20/SMT pin 33).

Parameter range
0 - 5

Parameter Description

0 Disabled

1 Commissioning Pushbutton

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

CB (Commissioning Button)
Use CB to simulate Commissioning Pushbutton presses in software.
You can enable a physical commissioning pushbutton with D0 (DIO0/ADC0/Commissioning
Configuration).
Set the parameter value to the number of button presses that you want to simulate. For example,
send CB1 to perform the action of pressing the Commissioning Pushbutton once.

Parameter range
1, 4

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 168

Parameter Description

1 Keeps device awake for 30 seconds.

4 Restore defaults (equivalent to sending an RE (Restore Defaults)).

Default
N/A

D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)
Sets or displays the DIO1/ADC1/TH_SPI_ATTN configuration (Micro pin 30/SMT pin 32/TH pin 19).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_ATTN for the through-hole device
N/A for surface-mount device

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D2 (DIO2/ADC2/TH_SPI_CLK Configuration)
Sets or displays the DIO2/ADC2/TH_SPI_CLK configuration (Micro pin 29/SMT pin 31/TH pin 18).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_CLK for through-hole devices
N/A for surface-mount devices

2 ADC

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 169

Parameter Description

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)
Sets or displays the DIO3/ADC3/TH_SPI_SSEL configuration (Micro pin 28/SMT pin 30/TH pin 17).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_SSEL for the through-hole device
N/A for surface-mount device

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D4 (DIO4/TH_SPI_MOSI Configuration)
Sets or displays the DIO4/TH_SPI_MOSI configuration (Micro pin 23/SMT pin 24/TH pin 11).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

Parameter Description

0 Disabled

1 SPI_MOSI for the through-hole device
N/A for the surface-mount andmicro device

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 170

Parameter Description

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D5 (DIO5/Associate Configuration)
Sets or displays the DIO5/ASSOCIATED_INDICATOR configuration (Micro pin 26/SMT pin 28/TH pin 15).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 Associate LED indicator - blinks when associated

2 N/A

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
1

D8 (DIO8/DTR/SLP_Request Configuration)
Sets or displays the DIO8/DTR/SLP_RQ configuration (Micro pin 9/SMT pin 10/TH pin 9).

Note If D8 is configured as DTR/Sleep_Request (1), the line will be left floating while the device sleeps.
Leaving D8 set to 1 and the corresponding pin not connected to anything external to the device may
result in higher sleep current draw.

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 171

Parameter Description

1 DTR/Sleep_Request (used with pin sleep and cyclic sleep with pin wake)

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

D9 (DIO9/ON_SLEEP Configuration)
Sets or displays the DIO9/ON_SLEEP configuration (Micro pin 25/SMT pin 26/TH pin 13).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 ON/SLEEP indicator

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P0 (DIO10/RSSI/PWM0 Configuration)
Sets or displays the DIO10/RSSI/PWM0 configuration (Micro pin 7/SMT pin 7/TH pin 6).
When configured as RSSI PWM output, the device outputs a PWM signal with a duty cycle equivalent to
the dBm of the received packet.
Use RP (RSSI PWM Timer) to configure the timeout.
When configured as PWM output (2): you can use M0 to explicitly control the PWM0 output. When used
with Analog line passing, PWM0 corresponds with ADC0.

Parameter range
0 - 5

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 172

Parameter Description

0 Disabled

1 RSSI PWM output

2 PWM0 output. M0 (PWM0 Duty Cycle) or I/O line passing control the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P1 (DIO11/PWM1 Configuration)
Sets or displays the DIO11/PWM1 configuration (Micro pin 8/SMT pin 8/TH pin 7).
When configured as PWM output (2): you can use M1 to explicitly control the PWM1 output. When used
with Analog line passing, PWM corresponds with ADC1.

Parameter range
0, 2 - 5

Parameter Description

0 Disabled

1 N/A

2 PWM1 output. M1 (PWM1 Duty Cycle) or I/O line passing control the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

P2 (DIO12/TH_SPI_MISO Configuration)
Sets or displays the DIO12/TH_SPI_MISO configuration (Micro pin 5/SMT pin 5/TH pin 4).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 173

Parameter Description

0 Disabled

1 SPI_MISO for the through-hole device
N/A for the surface-mount andmicro device

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

PR (Pull-up/Down Resistor Enable)
The bit field that configures the internal pull-up/down resistor status for the I/O lines.

n If you set a PR bit to 1, it enables the pull-up/down resistor
n If you set a PR bit to 0, it specifies no internal pull-up/down resistor.

The PD (Pull Direction) parameter determines the direction of the internal pull-up/down resistor.
PR and PD only affect lines that are configured as digital inputs (3) or disabled (0).
By default, pull-up resistors are enabled on all disabled I/O lines.
The following table defines the bit-field map for PR and PD commands.

Bit I/O line Micro pin Surface-mount pin Through-hole pin

0 DIO4 23 24 11

1 DIO3 28 30 17

2 DIO2 29 31 18

3 DIO1 30 32 19

4 DIO0 31 33 20

5 DIO6 27 29 16

6 DIO8 9 10 9

7 DIO14 4 4 3

8 DIO5 26 28 15

9 DIO9 25 26 13

10 DIO12 5 5 4

11 DIO10 7 7 6

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 174

Bit I/O line Micro pin Surface-mount pin Through-hole pin

12 DIO11 8 8 7

13 DIO7 24 25 12

14 DIO13 3 3 2

15 DIO15 16 17 N/A

16 DIO16 15 16 N/A

17 DIO17 14 15 N/A

18 DIO18 13 14 N/A

19 DIO19 11 12 N/A

Parameter range
Through-hole: 0 - 0xFFFF
SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

Example
Sending the command ATPR 6F turn bits 0, 1, 2, 3, 5 and 6 ON, and bits 4 and 7 OFF. The binary
equivalent of 0x6F is 01101111. Bit 0 is the right-most digit in the binary bit field.

PD (Pull Up/Down Direction)
See PR (Pull-up/Down Resistor Enable) for the bit mappings.

Parameter range
Through-hole: 0 - 0xFFFF
SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

M0 (PWM0 Duty Cycle)
The duty cycle of the PWM0 line (Micro pin 7/SMT pin 7).
If IA (I/O Input Address) is set correctly and P0 (DIO10/RSSI/PWM0 Configuration) is configured as
PWM0 output, incoming AD0 samples automatically modify the PWM0 value. See PT (PWM Output
Timeout).
To configure the duty cycle of PWM0:

1. Enable PWM0 output (P0 = 2).
2. Change M0 to the desired value.
3. Apply settings (use CN or AC).

AT commands I/O settings commands

Digi XBee® 3 802.15.4 RF Module User Guide 175

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM0 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

M1 (PWM1 Duty Cycle)
If IA (I/O Input Address) is set correctly and P1 (DIO11/PWM1 Configuration) is configured as PWM1
output, incoming AD0 samples automatically modify the PWM1 value. See PT (PWM Output Timeout).
To configure the duty cycle of PWM1:

1. Enable PWM1 output (P1 = 2).
2. Change M1 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM1 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

RP (RSSI PWM Timer)
The PWM timer expiration in 0.1 seconds. RP sets the duration of pulse width modulation (PWM) signal
output on the RSSI pin. The pin signal duty cycle updates with each received packet and shuts off
when the timer expires. This command is only applicable when P0 is set to 1 which enables RSSI PWM
output.
When RP = 0xFF, the output is always on.

Parameter range
0 - 0xFF (x 100 ms), 0xFF

Default
0x28 (four seconds)

LT (Associate LED Blink Time)
Set or read the Associate LED blink time. If you use D5 (DIO5/Associate Configuration) to enable the
Associate LED functionality (DIO5/Associate pin), this value determines the on and off blink times for
the LED when the device has joined the network.
If LT = 0, the device uses the default blink rate: 500 ms for a sleep coordinator, 250 ms for all other
nodes.

AT commands I/O sampling commands

Digi XBee® 3 802.15.4 RF Module User Guide 176

Parameter range
0, 0x14 - 0xFF (x 10 ms)

Default
0

I/O sampling commands
The following commands configure I/O sampling on an originating device. Any I/O sample generated
by this device is sent to the address specified by DH and DL. You must configure at least one I/O line as
an input or output for a sample to be generated.

IS (I/O Sample)
Immediately forces an I/O sample to be generated for the digital and analog I/O lines that are
configured for the local device. If you issue the command to the local device, the sample data is sent
out the local serial interface. If sent remotely, the sample is taken on the destination and the sample
data is returned as an Description.
If the device receives ERROR as a response to an IS query, there are no valid I/O lines to sample.
The IS command cannot be issued from within MicroPython or over BLE.
Refer to On-demand sampling for more information on using this command and examples.

Standard I/O capability
If AO (API Output Options) is set to 2, the XBee 3 802.15.4 RF Module's IS I/O options are D0
(DIO0/ADC0/Commissioning Configuration) - D8 (DIO8/DTR/SLP_Request Configuration) and four
analog channels: AD0/DIO0 - AD3/DIO3.
When operating in Transparent mode (AP (API Enable) = 0 and AO (API Output Options) = 2), the data is
returned in the following format:
All bytes are converted to ASCII:

number of samples<CR>
AIO/DIO mask (Bits 0 - 8 are digital I/O; Bits 9 - 12 analog channels)<CR>
DIO data<CR> (If DIO lines are enabled)
ADC channel Data<CR> (This will repeat for every enabled ADC channel)
<CR> (end of data noted by extra <CR>)

When operating in API mode (AP = 1), the command immediately returns anOK response. The data
follows in the normal API format for DIO data.

Extended I/O capability
If A0 is set to 0 or 1, the XBee 3 802.15.4 RF Module's IS I/O options are D0
(DIO0/ADC0/Commissioning Configuration) - D9 (DIO9/ON_SLEEP Configuration) and P0
(DIO10/RSSI/PWM0 Configuration) - P4 (DIO14/UART_DIN Configuration) and four analog channels
AD0/DIO0 - AD3/DIO3.
When operating in Transparent mode (AP = 0 and AO = 0, AO = 1), the data is returned in the following
format:
All bytes are converted to ASCII:

number of samples<CR>
DIO mask (Bits 0 - 14 are digital I/O<CR>
AIO mask (Bits 0 - 3 are Analog channels<CR>

AT commands I/O sampling commands

Digi XBee® 3 802.15.4 RF Module User Guide 177

DIO data<CR> (If DIO lines are enabled)
ADC channel Data<CR> (This will repeat for every enabled ADC channel)
<CR> (end of data noted by extra <CR>)

When operating in API mode (AP = 1), the command immediately returns anOK response. The data
follows in the normal API format for DIO data.

Parameter range
N/A

Default
N/A

IR (Sample Rate)
Set or read the I/O sample rate to enable periodic sampling. When set, this parameter causes the
device to sample all enabled DIO and ADC at a specified interval.
To enable periodic sampling, set IR to a non-zero value, and enable the analog or digital I/O
functionality of at least one device pin (see D0 (DIO0/ADC0/Commissioning Configuration)-D8
(DIO8/DTR/SLP_Request Configuration), P0 (DIO10/RSSI/PWM0 Configuration)-P2 (DIO12/TH_SPI_
MISO Configuration).

WARNING! If you set IR to 1 or 2, the device will not keep up andmany samples will be lost.

Parameter range
0 - 0xFFFF (x 1 ms)

Default
0

IC (DIO Change Detect)
Set or read the digital I/O pins to monitor for changes in the I/O state.
IC works with the individual pin configuration commands (D0 - D9, P0 - P5). If the device detects a
change on an enabled digital I/O pin, it immediately transmits a digital I/O sample to the address
specified by DH + DL. If sleep is enabled, the edge transition must occur during a wake period to
trigger a change detect.
The data transmission contains only DIO data.
IC is a bitmask you can use to enable or disable edge detection on individual digital I/O lines. Only
DIO0 through DIO15 can be sampled using a Change Detect.

Bit field

Bit I/O line Device pin

0 DIO0 Micro pin 31/SMT pin 33/TH pin 20

1 DIO1 Micro pin 30/SMT pin 32/TH pin 19

AT commands I/O sampling commands

Digi XBee® 3 802.15.4 RF Module User Guide 178

Bit I/O line Device pin

2 DIO2 Micro pin 29/SMT pin 31/TH pin 18

3 DIO3 Micro pin 28/SMT pin 30/TH pin 17

4 DIO4 Micro pin 23/SMT pin 24/TH pin 11

5 DIO5 Micro pin 26/SMT pin 28/TH pin 15

6 DIO6 Micro pin 27/SMT pin 29/TH pin 16

7 DIO7 Micro pin 24/SMT pin 25/TH pin 12

8 DIO8 Micro pin 9/SMT pin 10/TH pin 9

9 DIO9 Micro pin 25/SMT pin 26/TH pin 13

10 DIO10 Micro pin 7/SMT pin 7/TH pin 6

11 DIO11 Micro pin 8/SMT pin 8/TH pin 7

12 DIO12 Micro pin 5/SMT pin 5/TH pin 4

13 DIO13 Micro pin 3/SMT pin 3/TH pin 2

14 DIO14 Micro pin 4/SMT pin 4/TH pin 3

Parameter range
0 - 0x7FFF

Default
0

AV (Analog Voltage Reference)
The analog voltage reference used for A/D sampling.

Parameter range
0 - 2

Parameter Description

0 1.25 V reference

1 2.5 V reference

2 VDD reference

Default
0

IT (Samples before TX)
Sets or displays the number of samples to collect before transmitting data. The maximum number of
samples is dependent on the number of enabled I/O lines and the maximum payload available.

AT commands I/O line passing commands

Digi XBee® 3 802.15.4 RF Module User Guide 179

If IT is set to a number too big to fit in the maximum payload, it is reduced such that it will fit. A query
of IT after setting it reports the actual number of samples in a packet.

Parameter range
0x1 - 0xFF

Default
1

IF (Sleep Sample Rate)
Set or read the number of sleep cycles that must elapse between periodic I/O samples. This allows
the firmware to take I/O samples only during some wake cycles. During those cycles, the firmware
takes I/O samples at the rate specified by IR (Sample Rate). In addition, setting IF to zero allows I/O
samples to occur before the device goes to sleep and occur thereafter every wake cycle specified by
IR.
To enable periodic sampling, set IR to a non-zero value, and enable the analog or digital I/O
functionality of at least one device pin. The sample rate is measured in milliseconds.
For more information, see the following commands:

n D0 (DIO0/ADC0/Commissioning Configuration) through D9 (DIO9/ON_SLEEP Configuration)
n P0 (DIO10/RSSI/PWM0 Configuration) through P2 (DIO12/TH_SPI_MISO Configuration)

Parameter range
0 – 0xFF

Default
1

IO (Digital Output Level)
Sets digital output levels. This allows DIO lines setup as outputs to be changed through Command
mode.

Parameter range
8-bit bit map; each bit represents the level of an I/O line set up as an output

Default
N/A

I/O line passing commands
The following AT commands allow I/O line passing to be enabled and configure the timeout that will be
used for each I/O line. Line Passing requires the device to receive an I/O sample from the address
specified by IA and have an I/O lines configured as outputs that corresponds to inputs in the received
I/O sample.

IA (I/O Input Address)
The source address of the device to which outputs are bound.
To disable I/O line passing, set all bytes to 0xFF.

AT commands I/O line passing commands

Digi XBee® 3 802.15.4 RF Module User Guide 180

To allow any I/O packet addressed to this device (including broadcasts) to change the outputs, set IA
to 0xFFFF.

Parameter range
0 - 0xFFFF FFFF FFFF FFFF

Default
0xFFFFFFFFFFFFFFFF (I/O line passing disabled)

IU (I/O Output Enable)
IU disables or enables I/O API UART output when line passing is enabled if the received sample has a
source address that matches IA (I/O Input Address) or if IA is set to 0xFFFF.

Note To enable API output, you must set AP (API Enable) to an API mode (AP = 1 or 2).

Parameter range
0 - 1

Parameter Description

0 Disabled

1 Enabled

Default
1

T0 (D0 Timeout Timer)
Specifies how long pin D0 (DIO0/ADC0/Commissioning Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T1 (D1 Output Timeout Timer)
Specifies how long pin D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

AT commands I/O line passing commands

Digi XBee® 3 802.15.4 RF Module User Guide 181

T2 (D2 Output Timeout Timer)
Specifies how long pin D2 (DIO2/ADC2/TH_SPI_CLK Configuration) holds a given value before it reverts
to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T3 (D3 Output Timeout Timer)
Specifies how long pin D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T4 (D4 Output Timeout Timer)
Specifies how long pin D4 (DIO4/TH_SPI_MOSI Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T5 (D5 Output Timeout Timer)
Specifies how long pin D5 (DIO5/Associate Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T6 (D6 Output Timeout Timer)
Specifies how long pin D6 (DIO6/RTS Configuration) holds a given value before it reverts to configured
value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

AT commands I/O line passing commands

Digi XBee® 3 802.15.4 RF Module User Guide 182

Default
0

T7 (D7 Output Timeout Timer)
Specifies how long pin D7 (DIO7/CTS Configuration) holds a given value before it reverts to configured
value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T8 (D8 Output Timer)
Specifies how long pin D8 (DIO8/DTR/SLP_Request Configuration) holds a given value before it reverts
to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T9 (D9 Output Timer)
Specifies how long pin D9 (DIO9/ON_SLEEP Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

Q0 (P0 Output Timer)
Specifies how long pin P0 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0xFF

Default
0

Q1 (P1 Output Timer)
Specifies how long pin P1 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

AT commands Location commands

Digi XBee® 3 802.15.4 RF Module User Guide 183

Parameter range
0 - 0xFF

Default
0

Q2 (P2 Output Timer)
Specifies how long pin P2 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0xFF

Default
0

PT (PWM Output Timeout)
Specifies how long both PWM outputs (P0, P1) output a given PWM signal before it reverts to the
configured value (M0/M1). If set to 0, there is no timeout. This timeout only affects these pins when
they are configured as PWM output.

Parameter range
0 - 0xFF (x 100 ms)

Default
0xFF

Location commands
The following commands are user-defined parameters used to store the physical location of the
deployed device.

LX (Location X—Latitude)
User-defined GPS latitude coordinates of the node that is displayed on Digi Remote Manager and
Network Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

LY (Location Y—Longitude)
User-defined GPS longitude coordinates of the node that is displayed on Digi Remote Manager and
Network Assistant.

AT commands Diagnostic commands - firmware/hardware information

Digi XBee® 3 802.15.4 RF Module User Guide 184

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

LZ (Location Z—Elevation)
User-defined GPS elevation of the node that is displayed on Digi Remote Manager and Network
Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

Diagnostic commands - firmware/hardware information
The following read-only commands are diagnostics that provide more information about the device.

VR (Firmware Version)
Reads the firmware version on a device.

Parameter range
0x2000 - 0x2FFF

Default
Set in the firmware

VL (Version Long)
Shows detailed version information including the application build date and time.

Parameter range
N/A

Default
N/A

VH (Bootloader Version)
Reads the bootloader version of the device.

Parameter range
N/A

Default
N/A

AT commands Diagnostic commands - firmware/hardware information

Digi XBee® 3 802.15.4 RF Module User Guide 185

HV (Hardware Version)
Display the hardware version number of the device.

Parameter range
0 - 0xFFFF [read-only]
Pre-definedHV values for XBee 3 RF devices:

n 0x41 = XBee 3 Micro (MMT) and Surface Mount (SMT)
n 0x42 = XBee 3 Through Hole (TH)

Default
Set in the factory

R? (Power Variant)
Specifies whether the device is a PRO or Non-PRO variant.

n 0 = PRO (+19 dBm output power)
n 1 = Non-PRO (+8 dBm output power)

Parameter range
0, 1 [read-only]

Default
N/A

%C (Hardware/Software Compatibility)
Specifies what firmware is compatible with this device's hardware.%C is compared to the to the
"compatibility_number" field of the firmware configuration xml file. Firmware with a compatibility
number lower than the value returned by%C cannot be loaded onto the board. If an invalid firmware
is loaded, the device will not boot until a valid firmware is reloaded.

Parameter range
[read-only]

Default
N/A

%V (Supply Voltage)
Reads the voltage on the Vcc pin in mV.

Parameter range
0 - 0xFFFF (in mV) [read only]

Default
N/A

AT commands Memory access commands

Digi XBee® 3 802.15.4 RF Module User Guide 186

TP (Module Temperature)
The current module temperature in degrees Celsius. The temperature is represented in two’s
complement, as shown in the following example:
1 °C = 0x0001 and -1°C = 0xFFFF

Parameter range
0 - 0xFFFF (Celsius) [read-only]

Default
N/A

CK (Configuration CRC)
Reads the cyclic redundancy check (CRC) of the current AT command configuration settings to
determine if the configuration has changed.
After a firmware update this commandmay return a different value.

Parameter range
0 - 0xFFFF [read-only]

Default
N/A

%P (Invoke Bootloader)
Forces the device to reset into the bootloader menu.
This command can only be issued locally.

Parameter range
N/A

Default
N/A

Memory access commands
This section details the executable commands that provide memory access to the device.

FR (Software Reset)
Resets the device. The device responds immediately with anOK and performs a reset 100 ms later.
If you issue FRwhile the device is in Commandmode, the reset effectively exits Commandmode.

Parameter range
N/A

Default
N/A

AT commands Memory access commands

Digi XBee® 3 802.15.4 RF Module User Guide 187

AC (Apply Changes)
This command applies changes to all command parameters configured in Commandmode.
Any of the following also applies changes the same as issuing an AC command:

n Exiting Commandmode with a CN command.
n Exiting Commandmode via timeout.
n Receiving a 0x08 API command frame.
n Issuing a 0x08 Local AT Command API frame.
n Issuing a remote 0x17 AT Command API frame with option bit 1 set.

Example: Altering the UART baud rate with the BD command does not change the operating baud
rate until after an AC command is received; at this point, the interface immediately changes baud
rates.

Parameter range
N/A

Default
N/A

WR (Write)
Immediately writes parameter values to non-volatile flash memory so they persist through a power
cycle. Operating network parameters are persistent and do not require a WR command for the device
to reattach to the network.

Note Once you issue a WR command, do not send any additional characters to the device until after
you receive the OK response. Use the WR command sparingly; the device’s flash supports a limited
number of write cycles.

Parameter range
N/A

Default
N/A

RE (Restore Defaults)
Restore device parameters to factory defaults.
Does not exit out of Commandmode.

Parameter range
N/A

Default
N/A

AT commands Custom Default commands

Digi XBee® 3 802.15.4 RF Module User Guide 188

Custom Default commands
The following commands are used to assign custom defaults to the device. Send RE (Restore Defaults)
to restore custom defaults. You must send these commands as local AT commands, they cannot be
set using Remote AT Command Request - 0x17.

%F (Set Custom Default)
When%F is received, the XBee 3 802.15.4 RF Module takes the next command received and applies it
to both the current configuration and the custom defaults, so that when defaults are restored with RE
(Restore Defaults) the custom value is used.

Parameter range
N/A

Default
N/A

!C (Clear Custom Defaults)
Clears all custom defaults. This command does not change the current settings, but only changes the
defaults so that RE (Restore Defaults) restores settings to the factory values.

Parameter range
N/A

Default
N/A

R1 (Restore Factory Defaults)
Restores factory defaults, ignoring any custom defaults set using %F (Set Custom Default).

Parameter range
N/A

Default
N/A

Operate in API mode

API mode overview 190
Use the AP command to set the operation mode 190
API frame format 190

Digi XBee® 3 802.15.4 RF Module User Guide 189

Operate in API mode API mode overview

Digi XBee® 3 802.15.4 RF Module User Guide 190

API mode overview
As an alternative to Transparent operating mode, you can use API operating mode. API mode provides
a structured interface where data is communicated through the serial interface in organized packets
and in a determined order. This enables you to establish complex communication between devices
without having to define your own protocol. The API specifies how commands, command responses
and device status messages are sent and received from the device using the serial interface or the
SPI interface.
We may add new frame types to future versions of the firmware, so we recommend building the ability
to filter out additional API frames with unknown frame types into your software interface.

Use the AP command to set the operation mode
Use AP (API Enable) to specify the operation mode:

AP command
setting Description

AP = 0 Transparent operating mode, UART serial line replacement with API modes
disabled. This is the default option.

AP = 1 API operation.

AP = 2 API operation with escaped characters (only possible on UART).

The API data frame structure differs depending on what mode you choose.

API frame format
An API frame consists of the following:

n Start delimeter
n Length
n Frame data
n Checksum

API operation (AP parameter = 1)
This is the recommended API mode for most applications. The following table shows the data frame
structure when you enable this mode:

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte

Frame data 4 - number (n) API-specific structure

Checksum n + 1 1 byte

Operate in API mode API frame format

Digi XBee® 3 802.15.4 RF Module User Guide 191

Any data received prior to the start delimiter is silently discarded. If the frame is not received correctly
or if the checksum fails, the XBee replies with a radio status frame indicating the nature of the failure.

API operation with escaped characters (AP parameter = 2)
Setting API to 2 allows escaped control characters in the API frame. Due to its increased complexity,
we only recommend this API mode in specific circumstances. API 2 may help improve reliability if the
serial interface to the device is unstable or malformed frames are frequently being generated.
When operating in API 2, if an unescaped 0x7E byte is observed, it is treated as the start of a new API
frame and all data received prior to this delimiter is silently discarded. For more information on using
this API mode, see the Escaped Characters and API Mode 2 in the Digi Knowledge base.
API escaped operating mode works similarly to API mode. The only difference is that when working in
API escapedmode, the software must escape any payload bytes that match API frame specific data,
such as the start-of-frame byte (0x7E). The following table shows the structure of an API frame with
escaped characters:

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte Characters escaped if needed

Frame data 4 - n API-specific structure

Checksum n + 1 1 byte

Start delimiter field
This field indicates the beginning of a frame. It is always 0x7E. This allows the device to easily detect a
new incoming frame.

Escaped characters in API frames
If operating in API mode with escaped characters (AP parameter = 2), when sending or receiving a
serial data frame, specific data values must be escaped (flagged) so they do not interfere with the
data frame sequencing. To escape an interfering data byte, insert 0x7D and follow it with the byte to
be escaped (XORed with 0x20).
The following data bytes need to be escaped:

n 0x7E: start delimiter
n 0x7D: escape character
n 0x11: XON
n 0x13: XOFF

To escape a character:

1. Insert 0x7D (escape character).
2. Append it with the byte you want to escape, XORed with 0x20.

In API mode with escaped characters, the length field does not include any escape characters in the
frame and the firmware calculates the checksum with non-escaped data.

http://knowledge.digi.com/articles/Knowledge_Base_Article/Escaped-Characters-and-API-Mode-2

Operate in API mode API frame format

Digi XBee® 3 802.15.4 RF Module User Guide 192

Example: escape an API frame
To express the following API non-escaped frame in API operating mode with escaped characters:

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

You must escape the 0x13 byte:

1. Insert a 0x7D.
2. XOR byte 0x13 with 0x20: 13 ⊕ 20 = 33

The following figure shows the resulting frame. Note that the length and checksum are the same as
the non-escaped frame.

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 7D 33 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

The length field has a two-byte value that specifies the number of bytes in the frame data field. It does
not include the checksum field.

Length field
The length field is a two-byte value that specifies the number of bytes contained in the frame data
field. It does not include the checksum field.

Frame data
This field contains the information that a device receives or will transmit. The structure of frame data
depends on the purpose of the API frame:

Start delimiter Length

Frame data

ChecksumFrame type Data

1 2 3 4 5 6 7 8 9 ... n n+1

0x7E MSB LSB API frame type Data Single byte

n Frame type is the API frame type identifier. It determines the type of API frame and indicates
how the Data field organizes the information.

n Data contains the data itself. This information and its order depend on the what type of frame
that the Frame type field defines.

Multi-byte values are sent big-endian.

Calculate and verify checksums
To calculate the checksum of an API frame:

1. Add all bytes of the packet, except the start delimiter 0x7E and the length (the second and
third bytes).

2. Keep only the lowest 8 bits from the result.
3. Subtract this quantity from 0xFF.

Operate in API mode API frame format

Digi XBee® 3 802.15.4 RF Module User Guide 193

To verify the checksum of an API frame:

1. Add all bytes including the checksum; do not include the delimiter and length.
2. If the checksum is correct, the last two digits on the far right of the sum equal 0xFF.

Example
Consider the following sample data packet: 7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8

Byte(s) Description

7E Start delimiter

00 0A Length bytes

01 API identifier

01 API frame ID

50 01 Destination address low

00 Option byte

48 65 6C 6C 6F Data packet

B8 Checksum

To calculate the check sum you add all bytes of the packet, excluding the frame delimiter 7E and the
length (the second and third bytes):
7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8
Add these hex bytes:
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F = 247
Now take the result of 0x247 and keep only the lowest 8 bits which, in this example, is 0x47 (the two
far right digits). Subtract 0x47 from 0xFF and you get 0xB8 (0xFF - 0x47 = 0xB8). 0xB8 is the checksum
for this data packet.
If an API data packet is composed with an incorrect checksum, the XBee 3 802.15.4 RF Module will
consider the packet invalid and will ignore the data.
To verify the check sum of an API packet add all bytes including the checksum (do not include the
delimiter and length) and if correct, the last two far right digits of the sum will equal FF.
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F + B8 = 2FF

Frame descriptions

The following sections describe the API frames.

64-bit Transmit Request - 0x00 195
16-bit Transmit Request - 0x01 197
Local AT Command Request - 0x08 199
Queue Local AT Command Request - 0x09 201
Transmit Request - 0x10 202
Explicit Addressing Command Request - 0x11 205
Remote AT Command Request - 0x17 211
BLE Unlock Request - 0x2C 213
User Data Relay Input - 0x2D 216
Secure Session Control - 0x2E 218
Description 222
Format 222
Examples 223
16-bit Receive Packet - 0x81 224
64-bit I/O Sample Indicator - 0x82 226
16-bit I/O Sample Indicator - 0x83 228
Description 230
Format 230
Examples 231
Transmit Status - 0x89 232
Modem Status - 0x8A 236
Modem status codes 237
Extended Transmit Status - 0x8B 239
Receive Packet - 0x90 242
Explicit Receive Indicator - 0x91 244
I/O Sample Indicator - 0x92 247
Remote AT Command Response- 0x97 250
Extended Modem Status - 0x98 252
BLE Unlock Response - 0xAC 255
Description 255
Format 255
Error cases 256
Examples 256
Secure Session Response - 0xAE 257

Digi XBee® 3 802.15.4 RF Module User Guide 194

Frame descriptions 64-bit Transmit Request - 0x00

Digi XBee® 3 802.15.4 RF Module User Guide 195

64-bit Transmit Request - 0x00
Response frame: Transmit Status - 0x89

Description
This frame type is used to send serial payload data as an RF packet to a remote device with a
corresponding 64-bit IEEE address.

Note This frame format is deprecated and should only be used by customers who require
compatibility with legacy Digi RF products. For new designs, we encourage you to use Transmit
Request - 0x10 to initiate API transmissions.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type 64-bit Transmit Request - 0x00

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to 0, the device will not emit a response frame.

5 64-bit Destination
address

Set to the 64-bit IEEE address of the destination device.
If set to 0x000000000000FFFF, the broadcast address is used.

13 8-bit Options A bit field of options that affect the outgoing transmission:

n Bit 0: Disable MAC ACK [0x01]
n Bit 1: Reserved (set to 0)
n Bit 2: Send packet with Broadcast PAN ID [0x04]

l 802.15.4 firmwares only

Note Option values may be combined. Set all unused bits to 0.

14-n variable RF data The serial data to be sent to the destination. Use NP to query the
maximum payload size that can be supported based on current
settings.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Frame descriptions 64-bit Transmit Request - 0x00

Digi XBee® 3 802.15.4 RF Module User Guide 196

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
Sending a unicast transmission to a device with the 64-bit address of 0013A20012345678 with the
serial data "TxData".
The corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate whether
the transmission succeeded.

7E 00 11 00 52 00 13 A2 00 12 34 56 78 00 54 78 44 61 74 61 9E

Frame type Frame ID 64-bit dest address Tx options RF data

0x00 0x52 0x0013A200
12345678

0x00 0x547844617461

Input Matches response "TxData"

64-bit broadcast
Sending a broadcast transmission of the serial data "Broadcast" and suppressing the corresponding
response by setting Frame ID to 0.

7E 00 14 00 00 00 00 00 00 00 00 FF FF 00 42 72 6F 61 64 63 61 73 74 6E

Frame type Frame ID 64-bit dest address Tx options RF data

0x00 0x00 0x00000000
0000FFFF

0x00 0x42726F616463617374

Input Suppress response Broadcast address "Broadcast"

Frame descriptions 16-bit Transmit Request - 0x01

Digi XBee® 3 802.15.4 RF Module User Guide 197

16-bit Transmit Request - 0x01
Response frame: Transmit Status - 0x89

Description
This frame type is used to send serial payload data as an RF packet to a remote device with a
corresponding 16-bit network address.

Note This frame format is deprecated and should only be used by customers who require
compatibility with legacy Digi RF products. For new designs, we encourage you to use Transmit
Request - 0x10 to initiate API transmissions.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type 16-bit Transmit Request - 0x01

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to 0, the device will not emit a response frame.

5 16-bit Destination
address

Set to the 16-bit network address of the destination device.
If set to 0xFFFF, the broadcast address is used.

7 8-bit Options A bit field of options that affect the outgoing transmission:

n Bit 0: Disable MAC ACK [0x01]
n Bit 1: Reserved (set to 0)
n Bit 2: Send packet with Broadcast PAN ID [0x04]

l 802.15.4 firmwares only

Note Option values may be combined. Set all unused bits to 0.

8-n variable RF data The serial data to be sent to the destination. Use NP to query the
maximum payload size that can be supported based on current
settings.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Frame descriptions 16-bit Transmit Request - 0x01

Digi XBee® 3 802.15.4 RF Module User Guide 198

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

16-bit unicast
Sending a unicast transmission to a device with the 16-bit address of 1234 with the serial data
"TxData".
The corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate whether
the transmission succeeded.

7E 00 0B 01 87 12 34 00 54 78 44 61 74 61 EB

Frame type Frame ID 16-bit dest address Tx options RF data

0x01 0x87 0x1234 0x00 0x547844617461

Input Matches response "TxData"

16-bit broadcast
Sending a broadcast transmission of the serial data "Broadcast" and suppressing the corresponding
response by setting Frame ID to 0.

7E 00 0E 01 00 FF FF 00 42 72 6F 61 64 63 61 73 74 6D

Frame type Frame ID 16-bit dest address Tx options RF data

0x01 0x00 0xFFFF 0x00 0x42726F616463617374

Input Suppress response Broadcast address "Broadcast"

Frame descriptions Local AT Command Request - 0x08

Digi XBee® 3 802.15.4 RF Module User Guide 199

Local AT Command Request - 0x08
Response frame: Description

Description
This frame type is used to query or set command parameters on the local device. Any parameter that
is set with this frame type will apply the change immediately. If you wish to queue multiple parameter
changes and apply them later, use the Queue Local AT Command Request - 0x09 instead.
When querying parameter values, this frame behaves identically to Queue Local AT Command Request
- 0x09: You can query parameter values by sending this frame with a command but no parameter
value field—the two-byte AT command is immediately followed by the frame checksum. When an AT
command is queried, a Description frame is populated with the parameter value that is currently set
on the device. The Frame ID of the 0x88 response is the same one set by the command in the 0x08
request frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Local AT Command Request - 0x08

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to0, the device will not emit a response frame.

5 16-bit AT command The two ASCII characters that identify the AT Command.

7-n variable Parameter
value
(optional)

If present, indicates the requested parameter value to set the
given register.
If no characters are present, it queries the current parameter
value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set the local command parameter
Set the NI string of the radio to "End Device".
The corresponding Description with a matching Frame ID will indicate whether the parameter change
succeeded.

Frame descriptions Local AT Command Request - 0x08

Digi XBee® 3 802.15.4 RF Module User Guide 200

7E 00 0E 08 A1 4E 49 45 6E 64 20 44 65 76 69 63 65 38

Frame type Frame ID AT command Parameter value

0x08 0xA1 0x4E49 0x456E6420446576696365

Request Matches response "NI" "End Device"

Query local command parameter
Query the temperature of the module—TP command.
The corresponding Description with a matching Frame ID will return the temperature value.

7E 00 04 08 17 54 50 3C

Frame type Frame ID AT command Parameter value

0x08 0x17 0x5450 (omitted)

Request Matches response "TP" Query the parameter

Frame descriptions Queue Local AT Command Request - 0x09

Digi XBee® 3 802.15.4 RF Module User Guide 201

Queue Local AT Command Request - 0x09
Response frame: Description

Description
This frame type is used to query or set queued command parameters on the local device. In contrast
to Local AT Command Request - 0x08, this frame queues new parameter values and does not apply
them until you either:

n Issue a Local AT Command using the 0x08 frame
n Issue an AC command—queued or otherwise

When querying parameter values, this frame behaves identically to Local AT Command Request - 0x08:
You can query parameter values by sending this frame with a command but no parameter value field—
the two-byte AT command is immediately followed by the frame checksum. When an AT command is
queried, a Description frame is populated with the parameter value that is currently set on the device.
The Frame ID of the 0x88 response is the same one set by the command in the 0x09 request frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Queue Local AT Command Request - 0x09

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to0, the device will not emit a response frame.

5 16-bit AT command The two ASCII characters that identify the AT Command.

7-n variable Parameter
value
(optional)

If present, indicates the requested parameter value to set the
given register at a later time.
If no characters are present, it queries the current parameter
value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Queue setting local command parameter
Set the UART baud rate to 115200, but do not apply changes immediately.

Frame descriptions Transmit Request - 0x10

Digi XBee® 3 802.15.4 RF Module User Guide 202

The device will continue to operate at the current baud rate until the change is applied with a
subsequent AC command.
The corresponding Description with a matching Frame ID will indicate whether the parameter change
succeeded.

7E 00 05 09 53 42 44 07 16

Frame type Frame ID AT command Parameter value

0x09 0x53 0x4244 0x07

Request Matches response "BD" 7 = 115200 baud

Query local command parameter
Query the temperature of the module (TP command).
The corresponding 0x88 - Local AT Command Response frame with a matching Frame ID will return
the temperature value.

7E 00 04 09 17 54 50 3B

Frame type Frame ID AT command Parameter value

0x09 0x17 0x5450 (omitted)

Request Matches response "TP" Query the parameter

Transmit Request - 0x10
Response frame: Extended Transmit Status - 0x8B

Description
This frame type is used to send payload data as an RF packet to a specific destination. This frame type
is typically used for transmitting serial data to one or more remote devices.
The endpoints used for these data transmissions are defined by the SE and EP commands and the
cluster ID defined by the CI command—excluding 802.15.4. To define the application-layer addressing
fields on a per-packet basis, use the Explicit Addressing Command Request - 0x11 instead.
Query the NP command to read the maximum number of payload bytes that can be sent.
See Maximum payload for additional information on payload size restrictions.

64-bit addressing

n For broadcast transmissions, set the 64-bit destination address to0x000000000000FFFF
n For unicast transmissions, set the 64-bit address field to the address of the desired destination

node
n If transmitting to a 64-bit destination, set the 16-bit address field to0xFFFE

https://confluence.digi.com/display/RUGCL/0x88+-+Local+AT+Command+Response

Frame descriptions Transmit Request - 0x10

Digi XBee® 3 802.15.4 RF Module User Guide 203

16-bit addressing

n For unicast transmissions, set the 16-bit address field to the address of the desired destination
node

n To use 16-bit addressing, set the 64-bit address field to0xFFFFFFFFFFFFFFFF

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Transmit Request - 0x10

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response frame.
If set to0, the device will not emit a response frame.

5 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
Broadcast address is 0x000000000000FFFF.
Zigbee coordinator address is 0x0000000000000000.
When using 16-bit addressing, set this field
to 0xFFFFFFFFFFFFFFFF.

13 16-bit 16-bit
destination
address

Set to the 16-bit network address of the destination device, if
known.
If transmitting to a 64-bit address, sending a broadcast, or the 16-
bit address is unknown, set this field to 0xFFFE.

15 8-bit Broadcast
radius

Sets the maximum number of hops a broadcast transmission can
traverse. This parameter is only used for broadcast transmissions.
If set to0—recommended—the value of NHspecifies the broadcast
radius.

16 8-bit Transmit
options

See the Transmit options bit field table below for available
options.
If set to 0, the value of TO specifies the transmit options.

17-n variable Payload
data

Data to be sent to the destination device. Up to NP bytes per
packet.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Transmit options bit field
The available transmit options vary depending on the protocol being used. Bitfield options can be
combined. Set all unused bits to 0.

Frame descriptions Transmit Request - 0x10

Digi XBee® 3 802.15.4 RF Module User Guide 204

802.15.4

Bit Meaning Description

0 Disable ACK [0x01] Disable acknowledgments on all unicasts.

1 Broadcast PAN [0x02] Transmission is sent to all PANs.

2 Reserved <set this bit to 0>

3 Reserved <set this bit to 0>

4 Secure Session Encryption [0x10] Encrypt payload for transmission across a Secure Session.
Reduces maximum payload size by 4 bytes.

Examples
Each example is written without escapes (AP=1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
Sending a unicast transmission to a device with the 64-bit address of 0013A20012345678 with the
serial data "TxData". Transmit options are set to 0, which means the transmission will send using the
options set by the TO command.
The corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate whether
the transmission succeeded.

7E 00 14 10 52 00 13 A2 00 12 34 56 78 FF FE 00 00 54 78 44 61 74 61 91

Frame
type Frame ID 64-bit dest

16-bit
dest

Bcast
radius Options RF data

0x10 0x52 0x0013A200
12345678

0xFFFE 0x00 0x00 0x547844617461

Request Matches
response

Destination Unknown N/A Will use
TO

"TxData"

64-bit broadcast
Sending a broadcast transmission of the serial data "Broadcast" to neighboring devices and
suppressing the corresponding response by setting Frame ID to 0.

7E 00 17 10 00 00 00 00 00 00 00 FF FF FF FE 01 00 42 72 6F 61 64 63 61 73 74 60

Frame
type Frame ID 64-bit dest

16-bit
dest Bcast radius

Tx
Options RF data

0x10 0x00 0x00000000
0000FFFF

0xFFFE 0x01 0x00 0x42726F616463617374

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 802.15.4 RF Module User Guide 205

Frame
type Frame ID 64-bit dest

16-bit
dest Bcast radius

Tx
Options RF data

Request Suppress
response

Broadcast
address

Reserved Single hop
broadcast

Will use
TO

"Broadcast"

16-bit unicast
Sending a unicast transmission to a device with the 16-bit address of 1234 with the serial data
"TxData". Disable retries and acknowledgments to prioritize performance over reliability. The
corresponding Transmit Status - 0x89 response with a matching Frame ID can be used to verify that
the transmission was sent.

7E 00 14 10 8D FF FF FF FF FF FF FF FF 12 34 00 01 54 78 44 61 74 61 DD

Frame
type Frame ID 64-bit dest

16-bit
dest

Bcast
radius

Tx
Options RF data

0x10 0x8D 0xFFFFFFFF
FFFFFFFF

0x1234 0x00 0x01 0x547844617461

Request Matches
response

Use 16-bit
addressing

Destination N/A Disable
retries

"TxData"

Explicit Addressing Command Request - 0x11
Response frame: Extended Transmit Status - 0x8B

Description
This frame type is used to send payload data as an RF packet to a specific destination
using application-layer addressing fields. The behavior of this frame is similar to Transmit Request -
0x10, but with additional fields available for user-defined endpoints, cluster ID, and profile ID. This
frame type is typically used for OTA updates, serial data transmissions, ZDO command execution,
third-party Zigbee interfacing, and advanced Zigbee operations.
Query NP (Maximum Packet Payload Bytes) to read the maximum number of payload bytes that can
be sent.
See Maximum payload for additional information on payload size restrictions.

64-bit addressing
n For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF
n For unicast transmissions, set the 64-bit address field to the address of the desired destination

node
n If transmitting to a 64-bit destination, set the 16-bit address field to 0xFFFE

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 802.15.4 RF Module User Guide 206

16-bit addressing
n DigiMesh does not support 16-bit addressing. The 16-bit address field is considered reserved

and should be set to 0xFFFE
n For unicast transmissions, set the 16-bit address field to the address of the desired destination

node
n To use 16-bit addressing, set the 64-bit address field to 0xFFFFFFFFFFFFFFFF

Reserved endpoints
For serial data transmissions, the 0xE8 endpoint should be used for both source and destination
endpoints.
Endpoints 0xDC - 0xEE are reserved for special use by Digi and should not be used in an application
outside of the listed purpose. The XBee 802.15.4 firmware only supports digi-specific endpoints,
endpoints used outside of this range will be interpreted as the 0xE8 data endpoint.
The active Digi endpoints are:

n 0xE8 - Digi Data endpoint
n 0xE6 - Digi Device Object (DDO) endpoint
n 0xE5 - XBee3 - Secure Session Server endpoint
n 0xE4 - XBee3 - Secure Session Client endpoint
n 0xE3 - XBee3 - Secure Session SRP authentication endpoint

Reserved cluster IDs
For serial data transmissions, the 0x0011 cluster ID should be used.
The following cluster IDs can be used on the 0xE8 data endpoint:

n 0x0011- Transparent data cluster ID
n 0x0012 - Loopback cluster ID:The destination node echoes any transmitted packet back to the

source device. Cannot be used on XBee 802.15.4 firmware.

Reserved profile IDs
The Digi profile ID of 0xC105 should be used when sending serial data between XBee devices.
The following profile IDs are handled by the XBee natively, all others—such as Smart Energy and Home
Automation—can be passed through to a host:

n 0xC105 - Digi profile ID
n 0x0000 - Zigbee device profile ID (ZDP)

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 802.15.4 RF Module User Guide 207

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Explicit Addressing Command Request - 0x11

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to0, the device will not emit a response frame.

5 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
Broadcast address is 0x000000000000FFFF.
Zigbee coordinator address is 0x0000000000000000.
When using 16-bit addressing, set this field
to 0xFFFFFFFFFFFFFFFF.

13 16-bit 16-bit
destination
address

Set to the 16-bit network address of the destination device if
known.
If transmitting to a 64-bit address, sending a broadcast, or the 16-
bit address is unknown, set this field to 0xFFFE.

15 8-bit Source
Endpoint

Source endpoint for the transmission.
Serial data transmissions should use 0xE8.

16 8-bit Destination
Endpoint

Destination endpoint for the transmission.
Serial data transmissions should use 0xE8.

17 16-bit Cluster ID The Cluster ID that the host uses in the transmission.
Serial data transmissions should use 0x11.

19 16-bit Profile ID The Profile ID that the host uses in the transmission.
Serial data transmissions between XBee devices should use
0xC105.

21 8-bit Broadcast
radius

Sets the maximum number of hops a broadcast transmission can
traverse. This parameter is only used for broadcast transmissions.
If set to 0 (recommended), the value of NH specifies the broadcast
radius.

22 8-bit Transmit
options

See the Transmit options bit field table below for available options.
If set to 0, the value of TO specifies the transmit options.

23-n variable Command
data

Data to be sent to the destination device. Up to NP bytes per
packet.
For ZDO and ZCL commands, the command frame is inserted here.
The fields in this nested command frame are represented in little-
endian.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Transmit options bit field
The available transmit options vary depending on the protocol being used. Bitfield options can be
combined. Set all unused bits to 0.

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 802.15.4 RF Module User Guide 208

802.15.4

Bit Meaning Description

0 Disable ACK [0x01] Disable acknowledgments on all unicasts.

1 Broadcast PAN [0x02] Transmission is sent to all PANs.

2 Reserved <set this bit to 0>

3 Reserved <set this bit to 0>

4 Secure Session Encryption [0x10] Encrypt payload for transmission across a Secure Session.
Reduces maximum payload size by 4 bytes.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
Sending a unicast transmission to an XBee device with the 64-bit address of 0013A20012345678 with
the serial data "TxData". Transmit options are set to 0, which means the transmission will send using
the options set by the TO command. This transmission is identical to a Transmit Request - 0x10 using
default settings.
The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID will indicate
whether the transmission succeeded.

7E 00 1A 11 87 00 13 A2 00 12 34 56 78 FF FE E8 E8 00 11 C1 05 00 00 54 78 44 61
74 61 B4

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sourc
e EP

Des
t
EP

Clust
er

Profil
e

Bcast
radi
us

Tx
optio
ns

Command
data

0x11 0x87 0x0013A2
00
12345678

0xFFFE 0xE8 0xE
8

0x001
1

0xC10
5

0x00 0x00 0x5478446174
61

Explic
it
reque
st

Matche
s
respon
se

Destinatio
n

Unkno
wn

Digi
data

Digi
dat
a

Data Digi
profile

N/A Use TO "TxData"

Loopback Packet
Sending a loopback transmission to an device with the 64-bit address of 0013A20012345678 using
Cluster ID 0x0012. To better understand the raw performance, retries and acknowledgements are
disabled.
The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID can be used
to verify that the transmission was sent.

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 802.15.4 RF Module User Guide 209

The destination will not emit a receive frame, instead it will return the transmission back to the
sender. The source device will emit the receive frame—the frame type is determined by the value
of AO—if the packet looped back successfully.

7E 00 1A 11 F8 00 13 A2 00 12 34 56 78 FF FE E8 E8 00 12 C1 05 00 01 54 78 44 61
74 61 41

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sourc
e EP

Des
t
EP

Clust
er

Profil
e

Bcast
radi
us

Tx
optio
ns

Command
data

0x11 0xF8 0x0013A2
00

12345678

0xFFFE 0xE8 0xE
8

0x001
2

0xC10
5

0x00 0x01 0x5478446174
61

Explic
it
reque
st

Matche
s
respon
se

Destinatio
n

Unkno
wn

Digi
data

Digi
dat
a

Data Digi
profile

N/A Disabl
e
retries

"TxData"

ZDO command - ZDP Management Leave Request
Request a Zigbee device with the 64-bit address of 0013A20012345678 leave the network via a ZDO
command. The ZDP request is sent as a broadcast with the destination defined in the ZDO command
frame. Each field in the ZDO frame is in little-endian, the rest of the Digi API frame is big-endian.
In order to output the response to the ZDO command request, the sender must be configured to emit
explicit receive frames by setting bit 0 of AO (API Output Options)—AO = 1. See Receiving ZDO
command and responses for more information.
The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID will indicate
whether the transmission succeeded. The destination will handle the request and return a response
to the sender, which will be emitted as a Explicit Receive Indicator - 0x91 if enabled.

7E 00 1E 11 01 00 00 00 00 00 00 FF FF FF FE 00 00 00 34 00 00 00 00A1 78 56 34
21 00 A2 13 00 00 45

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sour
ce
EP

De
st
EP Cluster

Profi
le

Bcas
t
radi
us

Tx
optio
ns

Command
data

11 DE 000000
00

0000FF
FF

FFFE 00 00 0000 0000 00 00 A1
78563421
00A21300

00

Frame descriptions Explicit Addressing Command Request - 0x11

Digi XBee® 3 802.15.4 RF Module User Guide 210

Fram
e
type

Frame
ID

64-bit
dest

16-bit
dest

Sour
ce
EP

De
st
EP Cluster

Profi
le

Bcas
t
radi
us

Tx
optio
ns

Command
data

0x11 0xDE 0x00000
000

0000FFF
F

0xFFF
E

0x00 0x0
0

0x0034 0x00
00

0x00 0x00 n 0xA1
n 0x0013A

200
123456
78

n 0x00

Expli
cit

reque
st

Match
es

respon
se

ZDO
comman
ds should

be
broadcas

ted

Reserv
ed

ZDO ZD
O

Managem
ent

Leave
Request
Cluster

Zigbe
e

Devic
e

Profil
e

(ZDP)

Use
BH

Use
TO

n Sequenc
e num

n 64-bit
dest

n Options

Frame descriptions Remote AT Command Request - 0x17

Digi XBee® 3 802.15.4 RF Module User Guide 211

Remote AT Command Request - 0x17
Response frame: 0x97 - Remote AT Command Response

Description
This frame type is used to query or set AT command parameters on a remote device.
For parameter changes on the remote device to take effect, you must apply changes, either by setting
the Apply Changes options bit, or by sending an AC command to the remote.
When querying parameter values you can query parameter values by sending this framewith a
command but no parameter value field—the two-byte AT command is immediately followed by the
frame checksum. When an AT command is queried, a Remote AT Command Response- 0x97 frame is
populated with the parameter value that is currently set on the device. The Frame ID of the 0x97
response is the same one set by the command in the 0x17 request frame.
XBee 3 firmwares support secured remote configuration through a Secure Session. Refer to Secured
remote AT commands for information on how to secure your devices against unauthorized remote
configuration.

Note Remote AT Command Requests should only be issued as unicast transmissions to avoid
potential network disruption. Broadcasts are not acknowledged, so there is no guarantee all devices
will receive the request. Responses are returned immediately by all receiving devices, which can cause
congestion on a large network.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Remote AT Command Request - 0x17.

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to 0, the device will not emit a response frame.

5 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
When using 16-bit addressing, set this field
to 0xFFFFFFFFFFFFFFFF.

13 16-bit 16-bit
destination
address

Set to the 16-bit network address of the destination device if
known.
If transmitting to a 64-bit address or the 16-bit address is
unknown, set this field to 0xFFFE.

https://confluence.digi.com/display/RUGCL/0x97+-+Remote+AT+Command+Response

Frame descriptions Remote AT Command Request - 0x17

Digi XBee® 3 802.15.4 RF Module User Guide 212

Offset Size Frame Field Description

15 8-bit Remote
command
options

Bit field of options that apply to the remote AT command request:

n Bit 0: Disable ACK [0x01]
n Bit 1: Apply changes on remote [0x02]

l If not set, changes will not applied until the device
receives an AC command or a subsequent command
change is received with this bit set

n Bit 2: Reserved (set to 0)
n Bit 3: Reserved (set to 0)
n Bit 4: Send the remote command securely [0x10]

l Requires a secure session be established with the
destination

Note Option values may be combined. Set all unused bits to 0.

16 16-bit AT
command

The two ASCII characters that identify the AT Command.

18-n variable Parameter
value
(optional)

If present, indicates the requested parameter value to set the
given register.
If no characters are present, it queries the current parameter
value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes—AP = 1—and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set remote command parameter
Set the NI string of a device with the 64-bit address of 0013A20012345678 to "Remote" and apply the
change immediately.
The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will indicate
success.

7E 00 15 17 27 00 13 A2 00 12 34 56 78 FF FE 02 4E 49 52 65 6D 6F 74 65 F6

Frame
type Frame ID 64-bit dest

16-bit
dest

Command
options

AT
command

Parameter
value

0x17 0x27 0x0013A200
12345678

0xFFFE 0x02 0x4E49 0x52656D6F7465

Request Matches
response

Unknown Apply Change "NI" "Remote"

Frame descriptions BLE Unlock Request - 0x2C

Digi XBee® 3 802.15.4 RF Module User Guide 213

Queue remote command parameter change
Change the PAN ID of a remote device so it can migrate to a new PAN, since this change would cause
network disruption, the change is queued so that it can be made active later with a subsequent AC
command or written to flash with a queuedWR command so the change will be active after a power
cycle.
The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will indicate
success.

7E 00 11 17 68 00 13 A2 00 12 34 56 78 FF FE 00 49 44 04 51 D8

Frame
type Frame ID 64-bit dest

16-bit
dest

Command
options

AT
command

Parameter
value

0x17 0x68 0x0013A200
12345678

0xFFFE 0x00 0x4944 0x0451

Request Matches
response

Unknown Queue Change "ID"

Query remote command parameter
Query the temperature of a remote device—TP command.
The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will return the
temperature value.

7E 00 0F 17 FA 00 13 A2 00 12 34 56 78 FF FE 00 54 50 84

Frame
type Frame ID 64-bit dest

16-bit
dest

Command
options

AT
command

Parameter
value

0x17 0xFA 0x0013A200
12345678

0xFFFE 0x00 0x5450 (omitted)

Request Matches
response

Unknown N/A "TP" Query the
parameter

BLE Unlock Request - 0x2C
Response frame: BLE Unlock Response - 0xAC

Description
This frame type is used to authenticate a connection on the Bluetooth interface and unlock the
processing of AT command frames across this interface. The frame format for the BLE Unlock Request
- 0x2C and BLE Unlock Response - 0xAC are identical.
The unlock process is an implementation of the SRP (Secure Remote Password) algorithm using the
RFC5054 1024-bit group and the SHA-256 hash algorithm . The SRP identifying user name, commonly
referred to as I, is fixed to the username apiservice.
Upon completion, each side will have derived a shared session key which is used to communicate in an
encrypted fashion with the peer. Additionally, a Modem Status - 0x8A with the status code 0x32

https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://tools.ietf.org/html/rfc5054#appendix-A

Frame descriptions BLE Unlock Request - 0x2C

Digi XBee® 3 802.15.4 RF Module User Guide 214

(Bluetooth Connected) is emitted. When an unlocked connection is terminated, a Modem Status
frame with the status code 0x33 (Bluetooth Disconnected) is emitted.
The following implementations are known to work with the BLE SRP implementation:

n github.com/cncfanatics/SRP

You need to modify the hashing algorithm to SAH256 and the values ofNandgto use the RFC5054
1024-bit group.

n github.com/cocagne/csrp
n github.com/cocagne/pysrp

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame
type

BLE Unlock Request - 0x2C
BLE Unlock Response - 0xAC

4 8-bit Step Indicates the phase of authentication and interpretation of payload
data:

1. Client presents A value
2. Server presents B and salt

3. Client present M1 session key validation value
4. Server presents M2 session key validation value and two 12-

byte nonces

See the phase tables below for more information.
Step values greater than 0x80 indicate error conditions:

0x80 = Unable to offer B—cryptographic error with content,
usually due to A mod N == 0
0x81 = Incorrect payload length
0x82 = Bad proof of key
0x83 = Resource allocation error
0x84 = Request contained a step not in the correct sequence

5-n varies Payload Payload structure varies by Step value. Refer to the phase tables
below for the structure of this field.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte—between
length and checksum.

https://github.com/cncfanatics/SRP
https://github.com/cocagne/csrp
https://github.com/cocagne/pysrp

Frame descriptions BLE Unlock Request - 0x2C

Digi XBee® 3 802.15.4 RF Module User Guide 215

Phase tables
The following fields are inserted as the payload data depending on the phase of the authentication
process

Phase 1 (Client presents A)

Offset Size Frame Field Description

5 1024-bit
(128 bytes)

A One-time ephemeral client public key.
If the A value is zero, the server will terminate the connection.

Phase 2 (Server presentsBand salt)

Offset Size Frame Field Description

5 32-bit
(4 bytes)

Salt The SRP Salt value from the $S command.

9 1024-bit
(128 bytes)

B One-time ephemeral host public key.

Phase 3 (Client presentsM1)

Offset Size Frame Field Description

5 256-bit
(32 bytes)

M1 SHA256 hash algorithm digest.

Phase 4 (Server presents M2)

Offset Size
Frame
Field Description

5 256-
bit
(32
bytes)

M2 SHA256 hash algorithm digest .

37 96-bit
(12
bytes)

Tx
nonce

Random nonce used as the constant prefix of the counter block for
encryption/decryption of data transmitted to the API service by the client.

49 96-bit
(12
bytes)

Rx
nonce

Random nonce used as the constant prefix of the counter block for
encryption/decryption of data received by the client from the API service.

Frame descriptions User Data Relay Input - 0x2D

Digi XBee® 3 802.15.4 RF Module User Guide 216

Upon completion of M2 verification, the session key has been determined to be correct and the API
service is unlocked and will allow additional API frames to be used. Content from this point will be
encrypted using AES-256-CTR with the following parameters:

n Key: The entire 32-byte session key.
n Counter: 128 bits total, prefixed with the appropriate nonce shared during authentication.

Initial remaining counter value is 1.
The counter for data sent into the XBee API Service is prefixed with the TX nonce value—see
the Phase 4 table, above—and the counter for data sent by the XBee to the client is prefixed
with the RX nonce value.

Examples

Example sequence to perform AT Command XBee API frames over BLE

1. Discover the XBee 3 802.15.4 RF Module through scanning for advertisements.
2. Create a connection to the GATT Server.
3. Optional, but recommended: request a larger MTU for the GATT connection.
4. Turn on indications for the API Response characteristic.
5. Perform unlock procedure using BLE Unlock Request - 0x2C unlock frames.
6. Once unlocked, you may send Local AT Command Request - 0x08 frames and receive AT

Command Response frames received.
a. For each frame to send, form the API Frame, and encrypt through the stream cipher as

described in the unlock procedure.
b. Write the frame using one or more write operations.
c. When successful, the response arrives in one or more indications. If your stack does not do

it for you, remember to acknowledge each indication as it is received. Note that you are
expected to process these indications and the response data is not available if you
attempt to perform a read operation to the characteristic.

d. Decrypt the stream of content provided through the indications, using the stream cipher
as described in the unlock procedure.

User Data Relay Input - 0x2D
Response frame: Transmit Status - 0x89
Output frame: Description

Description
This frame type is used to relay user data between local interfaces: MicroPython (internal interface),
BLE, or the serial port. Data relayed to the serial port—while in API mode—will be output as a
Description frame.
For information and examples on how to relay user data using MicroPython, see Send and receive
User Data Relay frames in the MicroPython Programming Guide.
For information and examples on how to relay user data using BLE, see Communicate with a
Micropython application in the XBee Mobile SDK user guide.

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm

Frame descriptions User Data Relay Input - 0x2D

Digi XBee® 3 802.15.4 RF Module User Guide 217

Use cases
n You can use this frame to send data to an external processor through the XBee UART/SPI via

the BLE connection. Use a cellphone to send the frame with UART interface as a target. Data
contained within the frame is sent out the UART contained within an Output Frame. The
external processor then receives and acts on the frame.

n Use an external processor to output the frame over the UART with the BLE interface as a
target. This outputs the data contained in the frame as the Output Frame over the active BLE
connection via indication.

n An external processor outputs the Frame over the UART with the Micropython interface as a
target. Micropython operates over the data and publishes the data to mqtt topic.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type User Data Relay Input - 0x2D

4 8-bit Frame ID Identifies the data frame for the host to correlate with a
subsequent response.
If set to 0, the device will not emit a response frame.

5 8-bit Destination
Interface

The intended interface for the payload data:
0 = Serial port—SPI, or UART when in API mode
1 = BLE
2 = MicroPython

6-n variable Data The user data to be relayed

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Error cases
Errors are reported in a Transmit Status - 0x89 frame that corresponds with the Frame ID of the Relay
Data frame:

Error
code Error Description

0x7C Invalid Interface The user specified a destination interface that does not exist or is
unsupported.

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 802.15.4 RF Module User Guide 218

Error
code Error Description

0x7D Interface not
accepting frames

The destination interface is a valid interface, but is not in a state that
can accept data.
For example: UART not in API mode, BLE does not have a GATT client
connected, or buffer queues are full.

If the message was relayed successfully, no status will be generated.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Relay to MicroPython
A host device needs to pass the message "Relay Data" to a MicroPython application running on a local
XBee device via the serial port.
A corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate if there was a
problem with relaying the data.
If successful, the XBee micropython application can call relay.receive() to retrieve the data.

7E 00 0D 2D 3D 02 52 65 6C 61 79 20 44 61 74 61 FC

Frame type Frame ID Destination interface Data

0x2D 0x3D 0x02 0x52656C61792044617461

Input Matches response MicroPython "Relay Data"

Secure Session Control - 0x2E
Response frame: 0xAE - Secure Session Response

Description
This frame type is used to control a secure session between a client and a server. If the remote node
has a password set and you set the frame to login, this will establish a secure session that will allow
securedmessages to be passed between the server and client.
This frame is also used for clients to log out of an existing secure session.
Secure Sessions are end-to-end connections. If a login attempt is addressed to a broadcast address,
the attempt will fail with an invalid value—status 0xA—error.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

https://confluence.digi.com/display/RUGCL/0xAE+-+Secure+Session+Response

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 802.15.4 RF Module User Guide 219

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Secure Session Control - 0x2E

4 64-bit 64-bit
destination
address

Set to the 64-bit IEEE address of the destination device.
Set to a broadcast address (0x000000000000FFFF) to affect all
active incoming sessions.

12 8-bit Secure
Session
options

Bit field of options that alter the session behavior:

n Bit 0: Client-side control:
l [0x00] = Login - Log in to a server as a client.

o If this bit is clear, the local device will act as a client
and initiate SRP authentication with the target
server.

l [0x01] = Logout - Log out of an existing session as a
client.
o If this bit is set, the local device will attempt to end an

existing client-side session with the target server.
o When set, all other options, the timeout field, and

password will be ignored.
n Bit 1: Server-side control:

l [0x02] = Terminate Session - If this bit is set, the server
will end active incoming session(s).
o The address field can be set to a specific node or the

broadcast address can be used to end all incoming
sessions.

o Use Extended Modem Status - 0x98 frames to
manage multiple incoming sessions.

n Bit 2: Timeout type:
l [0x00] = Fixed timeout - The session terminates after

the timeout period has elapsed.
l [0x04] = Inter-packet timeout - The timeout is

refreshed every time a secure transmission occurs
between client and server.

Note Option values may be combined. Set all unused bits to 0.

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 802.15.4 RF Module User Guide 220

Offset Size
Frame
Field Description

13 16-bit Timeout Timeout value for the secure session in units of⅒ th second.
Accepts up to 0x4650 (30 minutes).
A session with a timeout of 0x0000 is considered a yielding session.
Yielding sessions will never time out, but if a server receives a
request to start a session when it has the maximum incoming
sessions, the oldest yielding session will be ended by the server to
make room for the new session. Sessions with non-zero timeouts
will never be ended in this way.

15-n variable Password The password set on the remote node—up to 64 ASCII characters.
Will be ignored if this frame is a logout or server termination frame.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte—
between length and checksum.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session Client - Login with fixed timeout
A change is needed to be made on a device that is secured against unauthorized configuration
changes. A gateway that is authorized to make the change logs into the remote node for 5 minutes as
a client using the following frame:
The corresponding Secure Session Response - 0xAE will indicate whether the login attempt
succeeded.

7E 00 14 2E 00 13 A2 00 12 34 56 78 00 0B B8 50 41 53 53 57 4F 52 44 D2

Frame type 64-bit dest Session options Timeout Password

0x2E 0x0013A200
12345678

0x00 0x02B8 0x50415353574F5244D2

Request Login
Fixed

5 minutes "PASSWORD"

Secure Session Client - Login for streaming data
A large stream of data needs to be sent to a gateway that is secured against receiving unauthorized
data. Because the data stream, and the gateway's ability to process the data is unknown, a Secure
Session using a 60 second inter-packet timeout is established. The sending device logs into the
gateway as a client using the following frame:
The corresponding Secure Session Response - 0xAE will indicate whether the login attempt
succeeded.

7E 00 13 2E 00 00 00 00 00 00 00 00 04 02 58 52 6F 73 33 62 75 64 D1

Frame descriptions Secure Session Control - 0x2E

Digi XBee® 3 802.15.4 RF Module User Guide 221

Frame type 64-bit dest Session options Timeout Password

0x2E 0x00000000
00000000

0x04 0x0258 0x526F7333627564

Request Zigbee coordinator Login
Inter-packet

 60 seconds "Ros3bud"

Frame descriptions Description

Digi XBee® 3 802.15.4 RF Module User Guide 222

64-bit Receive Packet - 0x80

Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11
n 64-bit Transmit Request - 0x00
n 16-bit Transmit Request - 0x01

Description
This frame type is emitted when a device configured with legacy API output—AO (API Output
Options) = 2—receives an RF data packet from a device configured to use 64-bit source addressing—
MY = 0xFFFE.

Note This frame format is deprecated and should only be used by customers who require
compatibility with legacy Digi RF products. For new designs, we encourage you to use Receive Packet
- 0x90 for reception of API transmissions.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame
type

64-bit Receive Packet - 0x80

4 64-bit 64-bit
source
address

The sender's 64-bit IEEE address.

12 8-bit RSSI Received Signal Strength Indicator. The Hexadecimal equivalent of (-
dBm) value. For example if RX signal strength is -40 dBm, then 0x28
(40 decimal) is returned.

Frame descriptions Examples

Digi XBee® 3 802.15.4 RF Module User Guide 223

Offset Size
Frame
Field Description

13 8-bit Options Bit field of options that apply to the receivedmessage:

n Bit 0: Reserved
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: 802.15.4 only - Packet was broadcast across all PANs

[0x04]

Note Option values may be combined.

14-n variable RF data The RF payload data that the device receives.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
A device with the 64-bit address of 0013A20087654321 sent a unicast transmission to a specific
device with the payload of "TxData". The following frame is emitted if the destination is configured
with AO = 2.

7E 00 11 80 00 13 A2 00 12 34 56 78 5E 01 54 78 44 61 74 61 11

Frame type 64-bit source RSSI Rx options Received data

0x80 0x0013A200
87654321

0x5E 0x01 0x547844617461

Output -94 dBm ACK was sent "TxData"

Frame descriptions 16-bit Receive Packet - 0x81

Digi XBee® 3 802.15.4 RF Module User Guide 224

16-bit Receive Packet - 0x81
Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11
n 64-bit Transmit Request - 0x00
n 16-bit Transmit Request - 0x01

Description
This frame type is emitted when a device configured with legacy API output—AO (API Output Options)
= 2—receives an RF data packet from a device configured to use 16-bit source addressing—MY <
0xFFFE.

Note This frame format is deprecated and should only be used by customers who require
compatibility with legacy Digi RF products. For new designs, we encourage you to use Receive Packet
- 0x90 for reception of API transmissions.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame
type

16-bit Receive Packet - 0x81

4 16-bit 16-bit
source
address

The sender's 16-bit network address.

6 8-bit RSSI Received Signal Strength Indicator. The Hexadecimal equivalent of (-
dBm) value. For example if RX signal strength is -40 dBm, then 0x28
(40 decimal) is returned.

Frame descriptions 16-bit Receive Packet - 0x81

Digi XBee® 3 802.15.4 RF Module User Guide 225

Offset Size
Frame
Field Description

7 8-bit Options Bit field of options that apply to the receivedmessage:

n Bit 0: Reserved
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: 802.15.4 only - Packet was broadcast across all PANs

[0x04]

Note Option values may be combined.

8-n variable RF data The RF payload data that the device receives.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
A device with the 16-bit address of 1234 sent a unicast transmission to a specific device with the
payload of "TxData". The following frame is emitted if the destination is configured with AO = 2.

7E 00 0B 81 12 34 5E 01 54 78 44 61 74 61 93

Frame type 64-bit source RSSI Rx options Received data

0x80 0x1234 0x5E 0x01 0x547844617461

Output -94 dBm ACK was sent "TxData"

Frame descriptions 64-bit I/O Sample Indicator - 0x82

Digi XBee® 3 802.15.4 RF Module User Guide 226

64-bit I/O Sample Indicator - 0x82

Description
This frame type is emitted when a device configured with legacy API output—AO (API Output Options)
= 2— receives an I/O sample frame from a remote device configured to use 64-bit source addressing—
MY = 0xFFFE. Only devices running in API mode will send I/O samples out the serial port.

Note This frame format is deprecated and should only be used by customers who require
compatibility with legacy Digi RF products. For new designs, we encourage you to use I/O Sample
Indicator - 0x92 for reception of I/O samples.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame
type

64-bit I/O Sample Indicator - 0x82

4 64-bit 64-bit
source
address

The sender's 64-bit IEEE address.

12 8-bit RSSI Received Signal Strength Indicator. The Hexadecimal equivalent of (-
dBm) value. For example if RX signal strength is -40 dBm, then 0x28
(40 decimal) is returned.

13 8-bit Options Bit field of options that apply to the receivedmessage:

n Bit 0: Reserved
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: 802.15.4 only - Packet was broadcast across all PANs

[0x04]

Note Option values may be combined.

14 8-bit Number
of
samples

The number of sample sets included in the payload.

Frame descriptions 64-bit I/O Sample Indicator - 0x82

Digi XBee® 3 802.15.4 RF Module User Guide 227

Offset Size
Frame
Field Description

15 16-bit Sample
mask

Bit field that indicates which I/O lines on the remote are configured
as inputs, if any:

bit 0: DIO0
bit 1: DIO1
bit 2: DIO2
bit 3: DIO3
bit 4: DIO4
bit 5: DIO5
bit 6: DIO6
bit 7: DIO7
bit 8: DIO8
bit 9: ADC0
bit 10: ADC1
bit 11: ADC2
bit 12: ADC3
bit 13: N/A
bit 14: N/A
bit 15: N/A

Each bit represents either a DIO line or ADC channel. Bit set to 1 if
channel is active.

17 16-bit Digital
samples
(if
included)

If the sample set includes any digital I/O lines—Digital channel
mask > 0—this field contain samples for all enabled digital I/O lines. If
no digital lines are configured as inputs or outputs, this field will be
omitted.
DIO lines that do not have sampling enabled return 0. Bits in this field
are arranged the same as they are in the channel mask field.

19 16-bit
variable

Analog
samples
(if
included)

If the sample set includes any analog I/O lines, each enabled analog
input returns a 16-bit value indicating the ADC measurement of that
input.
Analog samples are ordered sequentially from AD0 to AD3.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Frame descriptions 16-bit I/O Sample Indicator - 0x83

Digi XBee® 3 802.15.4 RF Module User Guide 228

16-bit I/O Sample Indicator - 0x83

Description
This frame type is emitted when a device configured with legacy API output—AO (API Output Options)
= 2— receives an I/O sample frame from a remote device configured to use 64-bit source addressing—
MY = 0xFFFE. Only devices running in API mode will send I/O samples out the serial port.

Note This frame format is deprecated and should only be used by customers who require
compatibility with legacy Digi RF products. For new designs, we encourage you to use I/O Sample
Indicator - 0x92 for reception of I/O samples.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame
type

16-bit I/O Sample Indicator - 0x83

4 16-bit 16-bit
source
address

The sender's 16-bit network address.

6 8-bit RSSI Received Signal Strength Indicator. The Hexadecimal equivalent of (-
dBm) value. For example if RX signal strength is -40 dBm, then 0x28
(40 decimal) is returned.

7 8-bit Options Bit field of options that apply to the receivedmessage:

n Bit 0: Reserved
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: 802.15.4 only - Packet was broadcast across all PANs

[0x04]

Note Option values may be combined.

8 8-bit Number
of
samples

The number of sample sets included in the payload.

Frame descriptions 16-bit I/O Sample Indicator - 0x83

Digi XBee® 3 802.15.4 RF Module User Guide 229

Offset Size
Frame
Field Description

9 16-bit Sample
mask

Bit field that indicates which I/O lines on the remote are configured
as inputs, if any:

bit 0: DIO0
bit 1: DIO1
bit 2: DIO2
bit 3: DIO3
bit 4: DIO4
bit 5: DIO5
bit 6: DIO6
bit 7: DIO7
bit 8: DIO8
bit 9: ADC0
bit 10: ADC1
bit 11: ADC2
bit 12: ADC3
bit 13: N/A
bit 14: N/A
bit 15: N/A

Each bit represents either a DIO line or ADC channel. Bit set to 1 if
channel is active.

11 16-bit Digital
samples
(if
included)

If the sample set includes any digital I/O lines—Digital channel
mask > 0— this field contain samples for all enabled digital I/O lines.
If no digital lines are configured as inputs or outputs, this field will be
omitted.
DIO lines that do not have sampling enabled return 0. Bits in this field
are arranged the same as they are in the channel mask field.

13 16-bit
variable

Analog
samples
(if
included)

If the sample set includes any analog I/O lines, each enabled analog
input returns a 16-bit value indicating the ADC measurement of that
input.
Analog samples are ordered sequentially from AD0 to AD3.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Frame descriptions Description

Digi XBee® 3 802.15.4 RF Module User Guide 230

Local AT Command Response - 0x88

Request frames:

n Local AT Command Request - 0x08
n Queue Local AT Command Request - 0x09

Description
This frame type is emitted in response to a local AT Command request. Some commands send back
multiple response frames; for example, ND (Network Discover). Refer to individual AT command
descriptions for details on API response behavior.
This frame is only emitted if the Frame ID in the request is non-zero.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Local AT Command Response - 0x88

4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.

5 16-bit AT
command

The two ASCII characters that identify the AT Command.

7 8-bit Command
status

Status code for the host's request:
0 = OK
1 = ERROR
2 = Invalid command
3 = Invalid parameter

8-n variable Command
data
(optional)

If the host requested a command parameter change, this field will
be omitted.
If the host queried a command by omitting the parameter value in
the request, this field will return the value currently set on the
device.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Frame descriptions Examples

Digi XBee® 3 802.15.4 RF Module User Guide 231

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set local command parameter
Host set the NI string of the local device to "End Device" using a 0x08 request frame.
The corresponding Description with a matching Frame ID is emitted as a response:

7E 00 05 88 01 4E 49 00 DF

Frame type Frame ID AT command Command Status Command data

0x88 0xA1 0x4E49 0x00 (omitted)

Response Matches request "NI" Success Parameter changes return no
data

Query local command parameter
Host queries the temperature of the local device—TP command—using a 0x08 request frame.
The corresponding Description with a matching Frame ID is emitted with the temperature value as a
response:

7E 00 07 88 01 54 50 00 FF FE D5

Frame type Frame ID AT command Command Status Command data

0x88 0x17 0x5450 0x00 0xFFFE

Response Matches request "TP" Success -2 °C

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 802.15.4 RF Module User Guide 232

Transmit Status - 0x89
Request frames:

n 64-bit Transmit Request - 0x00
n 16-bit Transmit Request - 0x01
n User Data Relay Input - 0x2D

Description
This frame type is emitted when a transmit request completes. The status field of this frame indicates
whether the request succeeded or failed and the reason.
This frame is only emitted if the Frame ID in the request is non-zero.

Note Broadcast transmissions are not acknowledged and always return a status of 0x00, even if the
delivery failed.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-
bit

Start
Delimiter

Indicates the start of an API frame.

1 16-
bit

Length Number of bytes between the length and checksum.

3 8-
bit

Frame
type

Transmit Status - 0x89

4 8-
bit

Frame ID Identifies the data frame for the host to correlate with a prior request.

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 802.15.4 RF Module User Guide 233

Offset Size
Frame
Field Description

5 8-
bit

Delivery
status

Complete list of delivery statuses:
0x00 = Success
0x01 = No ACK received
0x02 = CCA failure
0x03 = Indirect message unrequested
0x04 = Transceiver was unable to complete the transmission
0x21 = Network ACK failure
0x22 = Not joined to network
0x2C = Invalid frame values (check the phone number)
0x31 = Internal error
0x32 = Resource error - lack of free buffers, timers, etc.
0x34 = No Secure Session Connection
0x35 = Encryption Failure
0x74 = Message too long
0x76 = Socket closed unexpectedly
0x78 = Invalid UDP port
0x79 = Invalid TCP port
0x7A = Invalid host address
0x7B = Invalid data mode
0x7C = Invalid interface. See User Data Relay Input - 0x2D.
0x7D = Interface not accepting frames. See User Data Relay
Input - 0x2D.
0x7E = A modem update is in progress. Try again after the
update is complete.
0x80 = Connection refused
0x81 = Socket connection lost
0x82 = No server
0x83 = Socket closed
0x84 = Unknown server
0x85 = Unknown error
0x86 = Invalid TLS configuration (missing file, and so forth)
0x87 = Socket not connected
0x88 = Socket not bound

Refer to the tables below for a filtered list of status codes that are
appropriate for specific devices.

EOF 8-
bit

Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Delivery status codes
Protocol-specific status codes follow

XBee 3 802.15.4
0x00 = Success
0x01 = No ACK received
0x02 = CCA failure
0x03 = Indirect message unrequested
0x04 = Transceiver was unable to complete the transmission
0x21 = Network ACK failure

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 802.15.4 RF Module User Guide 234

0x22 = Not joined to network
0x31 = Internal error
0x32 = Resource error - lack of free buffers, timers, etc.
0x34 = No Secure Session Connection
0x35 = Encryption Failure
0x74 = Message too long
0x7C = Invalid interface. See User Data Relay Input - 0x2D.
0x7D = Interface not accepting frames. See User Data Relay Input - 0x2D.

XBee Cellular
0x00 = Successful transmit
0x21 = Failure to transmit to cell network
0x22 = Not registered to cell network
0x2C = Invalid frame values (check the phone number)
0x31 = Internal error
0x32 = Resource error (retry operation later). See Socket limits in API mode for more information.
0x74 = Message too long
0x76 = Socket closed unexpectedly
0x78 = Invalid UDP port
0x79 = Invalid TCP port
0x7A = Invalid host address
0x7B = Invalid data mode
0x7C = Invalid interface. See User Data Relay Input - 0x2D.
0x7D = Interface not accepting frames. See User Data Relay Input - 0x2D.
0x7E = A modem update is in progress. Try again after the update is complete.
0x80 = Connection refused
0x81 = Socket connection lost
0x82 = No server
0x83 = Socket closed
0x84 = Unknown server
0x85 = Unknown error
0x86 = Invalid TLS configuration (missing file, and so forth)
0x87 = Socket not connected
0x88 = Socket not bound

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Successful transmission
Host sent a unicast transmission to a remote device using a 64-bit Transmit Request - 0x00 frame.
The corresponding 0x89 Transmit Status with a matching Frame ID is emitted as a response to the
request:

https://www.digi.com/resources/documentation/digidocs/90002253/Reference/r_socket_limits.htm

Frame descriptions Transmit Status - 0x89

Digi XBee® 3 802.15.4 RF Module User Guide 235

7E 00 03 89 52 00 24

Frame type Frame ID Delivery status

0x89 0x52 0x00

Response Matches request Success

Frame descriptions Modem Status - 0x8A

Digi XBee® 3 802.15.4 RF Module User Guide 236

Modem Status - 0x8A

Description
This frame type is emitted in response to specific conditions. The status field of this frame indicates
the device behavior.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-
bit

Start
Delimiter

Indicates the start of an API frame.

1 16-
bit

Length Number of bytes between the length and checksum.

3 8-
bit

Frame
type

Modem Status - 0x8A

Frame descriptions Modem status codes

Digi XBee® 3 802.15.4 RF Module User Guide 237

Offset Size
Frame
Field Description

4 8-
bit

Modem
status

Complete list of modem statuses:
0x00 = Hardware reset or power up
0x01 = Watchdog timer reset
0x02 = Joined network
0x03 = Left network
0x06 = Coordinator started
0x07 = Network security key was updated
0x0B = Network woke up
0x0C = Network went to sleep
0x0D = Voltage supply limit exceeded
0x0E = Remote Manager connected
0x0F = Remote Manager disconnected
0x11 = Modem configuration changed while join in progress
0x12 = Access fault
0x13 = Fatal error
0x3B = Secure session successfully established
0x3C = Secure session ended
0x3D = Secure session authentication failed
0x3E = Coordinator detected a PAN ID conflict but took no action
0x3F = Coordinator changed PAN ID due to a conflict
0x32 = BLE Connect
0x33 = BLE Disconnect
0x34 = Bandmask configuration failed
0x35 = Cellular component update started
0x36 = Cellular component update failed
0x37 = Cellular component update completed
0x38 = XBee firmware update started
0x39 = XBee firmware update failed
0x3A = XBee firmware update applying
0x40 = Router PAN ID was changed by coordinator due to a conflict
0x42 = Network Watchdog timeout expired
0x80 through 0xFF = Stack error
Refer to the tables below for a filtered list of status codes that are
appropriate for specific devices.

EOF 8-
bit

Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Modem status codes
Statuses for specific modem types are listed here.

XBee 802.15.4
0x00 = Hardware reset or power up
0x01 = Watchdog timer reset
0x02 = End device successfully associated with a coordinator
0x03 = End device disassociated from coordinator or coordinator failed to form a new network
0x06 = Coordinator formed a new network
0x0D = Voltage supply limit exceeded—see Over-voltage detection in the XBee 3 RF Module Hardware
Reference Manual.

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Frame descriptions Modem status codes

Digi XBee® 3 802.15.4 RF Module User Guide 238

0x3B = XBee 3 - Secure session successfully established
0x3C = XBee 3 - Secure session ended
0x3D = XBee 3 - Secure session authentication failed
0x32 = XBee 3 - BLE Connect
0x33 = XBee 3 - BLE Disconnect
0x34 = XBee 3 - No Secure Session Connection

XBee Cellular
0x00 = Hardware reset or power up
0x01 = Watchdog timer reset
0x02 = Registered with cellular network
0x03 = Unregistered with cellular network
0x0E = Remote Manager connected
0x0F = Remote Manager disconnected
0x32 = XBee 3 - BLE Connect
0x33 = XBee 3 - BLE Disconnect
0x34 = Bandmask configuration failed
0x35 = Cellular component update started
0x36 = Cellular component update failed
0x37 = Cellular component update completed
0x38 = XBee firmware update started
0x39 = XBee firmware update failed
0x3A = XBee firmware update applying

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Boot status
When a device powers up, it returns the following API frame:

7E 00 02 8A 00 75

Frame type Modem Status

0x8A 0x00

Status Hardware Reset

Frame descriptions Extended Transmit Status - 0x8B

Digi XBee® 3 802.15.4 RF Module User Guide 239

Extended Transmit Status - 0x8B
Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11

Description
This frame type is emitted when a network transmission request completes. The status field of this
frame indicates whether the request succeeded or failed and the reason. This frame type provides
additional networking details about the transmission.
This frame is only emitted if the Frame ID in the request is non-zero.
Zigbee transmissions to an unknown network address of 0xFFFEwill return the discovered 16-bit
network address in this response frame. This network address should be used in subsequent
transmissions to the specific destination.

Note Broadcast transmissions are not acknowledged and always return a status of 0x00, even if the
delivery failed.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-
bit

Start
Delimiter

Indicates the start of an API frame.

1 16-
bit

Length Number of bytes between the length and checksum.

3 8-
bit

Frame type Transmit Status - 0x8B

4 8-
bit

Frame ID Identifies the data frame for the host to correlate with a prior request.

5 16-
bit

16-bit
destination
address

The 16-bit network address where the packet was delivered (if
successful). If not successful, this address is 0xFFFD (destination
address unknown). 0xFFFE indicates 16-bit addressing was not used.

7 8-
bit

Transmit
retry count

The number of application transmission retries that occur.

Frame descriptions Extended Transmit Status - 0x8B

Digi XBee® 3 802.15.4 RF Module User Guide 240

Offset Size
Frame
Field Description

8 8-
bit

Delivery
status

Complete list of delivery statuses:
0x00 = Success
0x01 = MAC ACK failure
0x02 = CCA/LBT failure
0x03 = Indirect message unrequested / no spectrum available
0x15 = Invalid destination endpoint
0x21 = Network ACK failure
0x22 = Not joined to network
0x23 = Self-addressed
0x24 = Address not found
0x25 = Route not found
0x26 = Broadcast source failed to hear a neighbor relay the
message
0x2B = Invalid binding table index
0x2C = Resource error - lack of free buffers, timers, etc.
0x2D = Attempted broadcast with APS transmission
0x2E = Attempted unicast with APS transmission, but EE = 0
0x31 = Internal resource error
0x32 = Resource error lack of free buffers, timers, etc.
0x34 = No Secure Session connection
0x35 = Encryption failure
0x74 = Data payload too large
0x75 = Indirect message unrequested

Refer to the tables below for a filtered list of status codes that are
appropriate for specific devices.

9 8-
bit

Discovery
status

Complete list of delivery statuses:
0x00 = No discovery overhead
0x01 = Zigbee address discovery
0x02 = Route discovery
0x03 = Zigbee address and route discovery
0x40 = Zigbee end device extended timeout

EOF 8-
bit

Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Delivery status codes
Protocol-specific status codes follow

XBee 3 802.15.4
0x00 = Success
0x01 = MAC ACK Failure
0x02 = CCA failure
0x03 = Indirect message unrequested
0x21 = Network ACK Failure
0x31 = Internal resource error
0x34 = XBee 3 - No Secure Session Connection
0x35 = Encryption Failure
0x74 = Data payload too large

Frame descriptions Extended Transmit Status - 0x8B

Digi XBee® 3 802.15.4 RF Module User Guide 241

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Successful transmission
Host sent a unicast transmission to a remote Zigbee device using a Transmit Request - 0x10frame.
The transmission was sent using the destination's IEEE 64-bit address with a 16-bit network address
of 0xFFFE (unknown).
The corresponding Extended Transmit Status - 0x8B with a matching Frame ID is emitted as a
response to the request:

7E 00 07 8B 52 12 34 02 00 01 D9

Frame
type Frame ID 16-bit dest address

Tx
retries

Delivery
status

Discovery
status

0x8B 0x52 0x1234 0x02 0x00 0x01

Response Matches
request

Discovered NWK
address

2 retries Success Address
discovery

To reduce discovery overhead, the host can retrieve the discovered 16-bit network address from this
response frame to use in subsequent transmissions.

Frame descriptions Receive Packet - 0x90

Digi XBee® 3 802.15.4 RF Module User Guide 242

Receive Packet - 0x90
Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11

Description
This frame type is emitted when a device configured with standard API output—AO (API Output
Options) = 0—receives an RF data packet.
Typically this frame is emitted as a result of a device on the network sending serial data using
the Transmit Request - 0x10 or Explicit Addressing Command Request - 0x11 addressed either as a
broadcast or unicast transmission.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Receive Packet - 0x90

4 64-bit 64-bit source
address

The sender's 64-bit address.

12 16-bit 16-bit source
address

The sender's 16-bit network address.

Frame descriptions Receive Packet - 0x90

Digi XBee® 3 802.15.4 RF Module User Guide 243

Offset Size Frame Field Description

14 8-bit Receive
options

Bit field of options that apply to the receivedmessage:

n Bit 0: Packet was Acknowledged [0x01]
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: 802.15.4 only - Packet was broadcast across all

PANs [0x04]
n Bit 3: Reserved
n Bit 4: Packet was sent across a secure session [0x10]
n Bit 5: Packet encrypted with Zigbee APS security [0x20]
n Bit 6: Zigbee only - packet was sent from an End Device

[0x40]
n Bit 6, 7: DigiMesh delivery method

l b’00 = <invalid option>
l b’01 = Point-multipoint [0x40]
l b’10 = Directed Broadcast [0x80]
l b’11 = DigiMesh [0xC0]

Note Option values may be combined.

15-n variable Received data The RF payload data that the device receives.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
A device with the 64-bit address of 0013A20087654321 sent a unicast transmission to a specific
device with the payload of "TxData". The following frame is emitted if the destination is configured
with AO = 0.

7E 00 12 90 00 13 A2 00 87 65 43 21 56 14 01 54 78 44 61 74 61 B9

Frame type 64-bit source 16-bit source Rx options Received data

0x90 0x0013A200
87654321

0x5614 0x01 0x547844617461

Output Network address ACK was sent "TxData"

Frame descriptions Explicit Receive Indicator - 0x91

Digi XBee® 3 802.15.4 RF Module User Guide 244

Explicit Receive Indicator - 0x91
Request frames:

n Transmit Request - 0x10
n Explicit Addressing Command Request - 0x11

Description
This frame type is emitted when a device configured with explicit API output—AO (API Output Options)
bit1 set—receives a packet.
Typically this frame is emitted as a result of a device on the network sending serial data using
the Transmit Request - 0x10 or Explicit Addressing Command Request - 0x11 addressed either as a
broadcast or unicast transmission.
This frame is also emitted as a response to ZDO command requests, see Receiving ZDO command and
responsesfor more information. The Cluster ID and endpoints are used to identify the type of
transaction that occurred.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Explicit Receive Indicator - 0x91

4 64-bit 64-bit source
address

The sender's 64-bit address.

12 16-bit 16-bit source
address

The sender's 16-bit network address.

14 8-bit Source
endpoint

Endpoint of the source that initiated transmission.

15 8-bit Destination
endpoint

Endpoint of the destination that the message is addressed to.

16 16-bit Cluster ID The Cluster ID that the frame is addressed to.

18 16-bit Profile ID The Profile ID that the fame is addressed to.

https://confluence.digi.com/display/RUGCL/0x10+-+Transmit+Request

Frame descriptions Explicit Receive Indicator - 0x91

Digi XBee® 3 802.15.4 RF Module User Guide 245

Offset Size Frame Field Description

20 8-bit Receive
options

Bit field of options that apply to the receivedmessage for packets
sent using Digi endpoints (0xDC-0xEE):

n Bit 0: Packet was Acknowledged [0x01]
n Bit 1: Packet was sent as a broadcast [0x02]
n Bit 2: 802.15.4 only - Packet was broadcast across all

PANs [0x04]
n Bit 4: Packet was sent across a secure session [0x10]
n Bit 5: Packet encrypted with Zigbee APS security [0x20]
n Bit 6: Zigbee only - packet was sent from an End Device

[0x40]
n Bit 6, 7: DigiMesh delivery method

l b’00 = <invalid option>
l b’01 = Point-multipoint [0x40]
l b’10 = Directed Broadcast [0x80]
l b’11 = DigiMesh [0xC0]

Note Option values may be combined.

21-n variable Received
data

The RF payload data that the device receives.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast
A device with the 64-bit address of 0013A20087654321 sent a unicast transmission to a specific
device with the payload of "TxData". The following frame is emitted if the destination is configured
with AO > 1.

7E 00 18 91 00 13 A2 00 87 65 43 21 87 BD E8 E8 00 11 C1 05 01 54 78 44 61 74 61
37

Frame
type

64-bit
source

16-bit
source

Source
EP

Dest
EP Cluster Profile

Rx
options Received data

0x91 0x0013A200
87654321

0x87BD 0xE8 0xE8 0x0011 0xC105 0x01 0x547844617461

Explicit
output

Network
address

Digi
data

Digi
data

Data Digi
profile

ACK was
sent

"TxData"

Frame descriptions Explicit Receive Indicator - 0x91

Digi XBee® 3 802.15.4 RF Module User Guide 246

ZDO command - ZDP IEEE Address Response
A ZDP IEEE address request is issued in order to identify the 64-bit address of a Zigbee device with the
16-bit network address of 0x046D. The following response is emitted out of the device that issued the
request if configured to do so. In order to output the response to the ZDO command request, the
sender must be configured to emit explicit receive frames by setting bit 0 of AO (API Output Options)
(AO = 1). See Receiving ZDO command and responses for more information.

Note Each field in the ZDO frame is in little-endian, the rest of the Digi API frame is big-endian.

7E 00 1E 91 00 13 A2 00 12 34 56 78 04 6D 00 00 80 01 00 00 01 B5 00 78 56 34 12
00 A2 13 00 6D 04 C3

Frame
type

64-bit
source

16-bit
source

Source
EP

Dest
EP Cluster Profile

Rx
options Received data

91 0013A200
12345678

046D 00 00 8001 0000 01 B5
00
78563412
00A21300
6D04

0x91 0x0013A200
87654321

0x046D 0x00 0x00 0x8001 0xC105 0x01 n 0xB5
n 0x00
n 0x0013A200

12345678
n 0x046D

Explicit
output

Network
address

ZDO ZDO IEEE
Address
Response

ZDO ACK was
sent

n Sequence
Num

n Status

n IEEE Address

n NWK
Address

Frame descriptions I/O Sample Indicator - 0x92

Digi XBee® 3 802.15.4 RF Module User Guide 247

I/O Sample Indicator - 0x92

Description
This frame type is emitted when a device configured with standard API output—AO (API Output
Options) = 0—receives an I/O sample frame from a remote device. Only devices running in API mode
will send I/O samples out the serial port.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame
type

I/O Sample Indicator - 0x92

4 64-bit 64-bit
source
address

The sender's 64-bit IEEE address.

12 16-bit 16-bit
source
address

The sender's 16-bit network address.

14 8-bit Receive
options

Bit field of options that apply to the receivedmessage:

n Bit 0: Packet was Acknowledged [0x01]
n Bit 1: Packet was sent as a broadcast [0x02]

Note Option values may be combined.

15 8-bit Number
of
samples

The number of sample sets included in the payload. This field typically
reports 1 sample.

Frame descriptions I/O Sample Indicator - 0x92

Digi XBee® 3 802.15.4 RF Module User Guide 248

Offset Size
Frame
Field Description

16 16-bit Digital
sample
mask

Bit field that indicates which I/O lines on the remote are configured
as digital inputs or outputs, if any:

bit 0: DIO0
bit 1: DIO1
bit 2: DIO2
bit 3: DIO3
bit 4: DIO4
bit 5: DIO5
bit 6: DIO6
bit 7: DIO7
bit 8: DIO8
bit 9: DIO9
bit 10: DIO10
bit 11: DIO11
bit 12: DIO12
bit 13: DIO13
bit 14: DIO14
bit 15: N/A

For example, a digital channel mask of 0x002Fmeans DIO 0, 1, 2, 3,
and 5 are enabled as digital I/O.

18 8-bit Analog
sample
mask

Bit field that indicates which I/O lines on the remote are configured
as analog input, if any:

bit 0: AD0
bit 1: AD1
bit 2: AD2
bit 3: AD3
bit 7: Supply Voltage (enabled with V+ command)

19 16-bit Digital
samples
(if
included)

If the sample set includes any digital I/O lines (Digital channel mask
> 0), this field contain samples for all enabled digital I/O lines. If no
digital lines are configured as inputs or outputs, this field will be
omitted.
DIO lines that do not have sampling enabled return 0. Bits in this field
are arranged the same as they are in the Digital channel mask field.

22 16-bit
variable

Analog
samples
(if
included)

If the sample set includes any analog I/O lines (Analog channel mask
> 0), each enabled analog input returns a 16-bit value indicating the
ADC measurement of that input.
Analog samples are ordered sequentially from AD0 to AD3.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte (between
length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

I/O sample
A device with the 64-bit address of 0013A20012345678 is configured to periodically send I/O sample
data to a particular device. The device is configured with DIO3, DIO4, and DIO5 configured as digital

Frame descriptions I/O Sample Indicator - 0x92

Digi XBee® 3 802.15.4 RF Module User Guide 249

I/O, and AD1 and AD2 configured as an analog input.
The destination will emit the following frame:

7E 00 16 92 00 13 A2 00 12 34 56 78 87 AC 01 01 00 38 06 00 28 02 25 00 F8 EA

Frame
type

64-bit
source

16-bit
source

Rx
option
s

Num
sample
s

Digital
channe
l mask

Analog
channe
l mask

Digital
sample
s

Analog
sampl
e 1

Analog
sampl
e 2

0x92 0x0013A20
0
12345678

0x87AC 0x01 0x01 0x0038 0x06 0x0028 0x0225 0x00F8

Sampl
e

Networ
k
address

ACK
was
sent

Single
sample
(typical)

b'00
111000
DIO3,
DIO4,
and
DIO5
enabled

b'0110
AD1 and
AD2
enabled

b'00
101000
DIO3
and
DIO5 are
HIGH;
DI04 is
LOW

AD1
data

AD2
data

Frame descriptions Remote AT Command Response- 0x97

Digi XBee® 3 802.15.4 RF Module User Guide 250

Remote AT Command Response- 0x97
Request frame: Remote AT Command Request - 0x17

Description
This frame type is emitted in response to a Remote AT Command Request - 0x17. Some commands
send back multiple response frames; for example, the ND command. Refer to individual AT command
descriptions for details on API response behavior.
This frame is only emitted if the Frame ID in the request is non-zero.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Remote AT Command Response - 0x97

4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.

5 64-bit 64-bit
source
address

The sender's 64-bit address.

13 16-bit 16-bit
source
address

The sender's 16-bit network address.

15 16-bit AT
command

The two ASCII characters that identify the AT Command.

17 8-bit Command
status

Status code for the host's request:
0x00 = OK
0x01 = ERROR
0x02 = Invalid command
0x03 = Invalid parameter
0x04 = Transmission failure

Statuses for Secured remote AT commands:
0x0B = No Secure Session - Remote command access
requires a secure session be established first
0x0C = Encryption error
0x0D = Command was sent insecurely - A Secure Session
exists, but the request needs to have the appropriate
command option set (bit 4).

Frame descriptions Remote AT Command Response- 0x97

Digi XBee® 3 802.15.4 RF Module User Guide 251

Offset Size Frame Field Description

18-n variable Parameter
value
(optional)

If the host requested a command parameter change, this field will
be omitted.
If the host queried a command by omitting the parameter value in
the request, this field will return the value currently set on the
device.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set remote command parameter
Host set the NI string of a remote device to "Remote" using a Remote AT Command Request - 0x17.
The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted as a
response:

7E 00 0F 97 27 00 13 A2 00 12 34 56 78 12 7E 4E 49 00 51

Frame
type Frame ID

64-bit
source

16-bit
source

AT
command

Command
Status Command data

0x97 0x27 0x0013A200
12345678

0x127E 0x4E49 0x00 (omitted)

Response Matches
request

Network
address

"NI" Success Parameter changes
return no data

Transmission failure
Host queued the the PAN ID change of a remote device using a Remote AT Command Request - 0x17.
Due to existing network congestion, the host will retry any failed attempts.
The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted as a
response:

7E 00 0F 97 27 00 13 A2 00 12 34 56 78 FF FE 49 44 04 EA

Frame
type Frame ID

64-bit
source

16-bit
source

AT
command

Command
Status Command data

0x97 0x27 0x0013A200
12345678

0xFFFE 0x4944 0x04 (omitted)

Response Matches
request

Unknown "ID" Transmission
failure

Parameter changes
return no data

Query remote command parameter
Query the temperature of a remote device—TP (Module Temperature).

Frame descriptions Extended Modem Status - 0x98

Digi XBee® 3 802.15.4 RF Module User Guide 252

The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted with
the temperature value as a response:

7E 00 11 97 27 00 13 A2 00 12 34 56 78 FF FE 54 50 00 00 2F A8

Frame
type Frame ID

64-bit
source

16-bit
source

AT
command

Command
Status

Command
data

0x97 0x27 0x0013A200
12345678

0x127E 0x4944 0x00 0x002F

Response Matches
request

Network
address

"TP" Success +47 °C

Extended Modem Status - 0x98

Description
The Extended Modem Status - 0x98 frame is intended to provide additional in-frame diagnostic
information over the traditional Modem Status - 0x8A frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-bit Start Delimiter Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type Extended Modem Status - 0x98

4 8-bit Status code Refer to the tables below for appropriate status codes

n variable Status data
(optional)

Additional fields that provide information about the status

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Secure Session status codes
When AZ (Extended API Options) is configured to output extended secure session statuses,
whenever Secure Session API Frames are emitted, the extendedmodem status will provide additional
details about the event.

Frame descriptions Extended Modem Status - 0x98

Digi XBee® 3 802.15.4 RF Module User Guide 253

Status
code Description

Status
data Size Description

0x3B A Secure Session was
established with this
node

Address 64-
bit

The address of the client in the session.

Options 8-
bit

Session options set by the client.

Timeout 16-
bit

Session timeout set by the client.

0x3C A Secure Session
ended

Address 64-
bit

The address of the other node in this session.

Reason 8-
bit

The reason the session was ended:
0x00 - Session was terminated by the
other node
0x01 - Session Timed out
0x02 - Received a transmission with an
invalid encryption counter
0x03 - Encryption counter overflow - the
maximum number of transmissions for a
single session has been reached
0x04 - Remote node out of memory

0x3D A Secure Session
authentication
attempt failed

Address 64-
bit

Address of the client node.

Error 8-
bit

Error that caused the authentication to fail. See
Secure Session Response - 0xAE for a list of error
statuses.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session established
A device has established a secure session with the local node that has AZ (Extended API
Options) configured to output extended secure session information. The following frame is emitted
that announces the secure session establishment.

7E 00 0D 98 3B 00 13 A2 00 12 34 56 78 00 46 50 CD

Frame type Status code Status data

0x98 0x3B n 0x0013A20012345678
n 0x00
n 0x4650

Frame descriptions Extended Modem Status - 0x98

Digi XBee® 3 802.15.4 RF Module User Guide 254

Frame type Status code Status data

Extended status Secure Session established n Address
n Options
n Timeout (30 min)

Zigbee Verbose join messages
The following example shows a successful association of a device that has configured to enable
Verbose Join messages. The device is operating in Transparent mode—AP = 0—to allow a human-
friendly way to troubleshoot association issues, if set for API mode—AP = 1—equivalent 0x98
Extended Modem Status frames would be emitted.

Message Description

V AI -SearchingforParent:FF ...search has started

V Scanning:03FFF800 ...channels 11 through 25 are enabled by the SC
setting for the Active Search.

V
BeaconRsp:0000000000000042A6010B949AC8FF

n ZS = 0x00
n extendedPanId = 00000000000042A6
n allowingJoin 0x01 (yes)
n radiochannel 0x0B
n panid 0x949A
n rssi 0xC8
n lqi = 0xFF

V Reject ID ...beacon response's extendedPanId does not
match this radio's ID setting of 3151

V
BeaconRsp:0200000000000002AB010C55D2B2DB

n ZS = 0x02
n extendedPanId = 0x00000000000002AB
n allowingJoin = 0x01 (yes)
n radiochannel = 0x0C
n panid = 0x55D2
n rssi = 0xB2
n lqi = 0xDB

V Reject ZS ...beacon response's ZS does not match this
radio's ZS setting

V
BeaconRsp:000000000000003151010EE29FDFFF

V BeaconSaved:0E05E29F0000000000003151 ...this beacon response is acceptable as a
candidate for association

V Joining:0E05E29F0000000000003151 ...sending association request

Frame descriptions BLE Unlock Response - 0xAC

Digi XBee® 3 802.15.4 RF Module User Guide 255

Message Description

V StackStatus: joined, network up 0290 ...we are joined, the network is up, we can send
and transmit

V Joined unsecured network:

V AI -AssociationSucceeded:00

BLE Unlock Response - 0xAC
Request frame: BLE Unlock Request - 0x2C

Description
This frame type is emitted in response to a BLE Unlock Request - 0x2C during a multi-stage BLE
authentication exchange.
This frame's format is identical to that of the originating request. Refer to BLE Unlock Request -
0x2C for information on the formatting and proper use of this frame.

User Data Relay Output - 0xAD

Input frame: User Data Relay Input - 0x2D

Description
This frame type is emitted when user data is relayed to the serial port from a local interface:
MicroPython (internal interface), BLE, or the serial port.
For information and examples on how to relay user data using MicroPython, see Send and receive
User Data Relay frames in the MicroPython Programming Guide.
for information and examples on how to relay user data using BLE, see Communicate with a
Micropython application in the XBee Mobile SDK user guide.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size
Frame
Field Description

0 8-bit Start
Delimiter

Indicates the start of an API frame.

1 16-bit Length Number of bytes between the length and checksum.

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm

Frame descriptions Error cases

Digi XBee® 3 802.15.4 RF Module User Guide 256

Offset Size
Frame
Field Description

3 8-bit Frame type User Data Relay Output - 0xAD

4 8-bit Source
Interface

The intended interface for the payload data:
0 = Serial port—SPI, or UART when in API mode
1 = BLE
2 = MicroPython

5-n variable Data The user data to be relayed

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Error cases
Errors are reported in a Transmit Status - 0x89 frame that corresponds with the Frame ID of the Relay
Data frame:

Error
code Error Description

0x7C Invalid Interface The user specified a destination interface that does not exist or is
unsupported.

0x7D Interface not
accepting frames

The destination interface is a valid interface, but is not in a state that
can accept data.
For example: UART not in API mode, BLE does not have a GATT client
connected, or buffer queues are full.

If the message was relayed successfully, no status will be generated.

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Relay from Bluetooth (BLE)
A mobile phone sends a serial data message to the XBee device's BLE interface. The message is
flagged to be sent out of the serial port of the XBee device. The following frame outputs the relayed
data:

7E 00 0C AD 01 52 65 6C 61 79 20 44 61 74 61 BA

Frame type Source interface Data

0xAD 0x01 0x52656C61792044617461

Output Bluetooth "Relay Data"

Frame descriptions Secure Session Response - 0xAE

Digi XBee® 3 802.15.4 RF Module User Guide 257

Secure Session Response - 0xAE
Request frame: Secure Session Control - 0x2E

Description
This frame type is output as a response to a Secure Session Control - 0x2E attempt. It indicates
whether the Secure Session operation was successful or not.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Offset Size Frame Field Description

0 8-
bit

Start Delimiter Indicates the start of an API frame.

1 16-
bit

Length Number of bytes between the length and checksum.

3 8-
bit

Frame type Secure Session Response - 0xAE

4 8-
bit

Response type The type of response to correlate with the preceding request:
0x00 - Login response
0x01 - Logout response
0x02 - Server Termination

5 64-
bit

64-bit source
address

The 64-bit IEEE address of the responding device.

Frame descriptions Secure Session Response - 0xAE

Digi XBee® 3 802.15.4 RF Module User Guide 258

Offset Size Frame Field Description

13 8-
bit

Status Typical statuses:
0x00 - SRP operation was successful
0x01 - Invalid Password - SRP verification failed due to
mismatchedM1 andM2 values
0x02 - Session request was rejected as there are too many
active sessions on the server already
0x03 - Session options or timeout are invalid
0x05 - Timed out waiting for the other node to respond
0x06 - Could not allocate memory needed for authentication
0x07 - A request to terminate a session in progress has been
made
0x08 - There is no password set on the server
0x09 - There was no initial response from the server
0x0A - Data within the frame is not valid or formatted
incorrectly

Atypical statuses:
0x80 - Server received a packet that was intended for a
client or vice-versa
0x81 - Received an SRP packet we were not expecting
0x82 - Offset for a split value (A/B) came out of order
0x83 - Unrecognized or invalid SRP frame type
0x84 - Authentication protocol version is not supported
0xFF - An undefined error occurred

EOF 8-
bit

Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples
Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session Login attempt
A client attempted to log into a Secure Session server.
The following Secure Session Response - 0xAE is emitted as a response:

7E 00 0B AE 00 00 13 A2 00 12 34 56 78 00 88

Frame type Response type 64-bit source Status

0x2E 0x00 0x0013A200
12345678

0x00

Response Login success

OTA firmware/file system upgrades

Overview 260
Scheduled upgrades 260
Create an OTA upgrade server 261

Digi XBee® 3 802.15.4 RF Module User Guide 259

OTA firmware/file system upgrades Overview

Digi XBee® 3 802.15.4 RF Module User Guide 260

Overview
The XBee 3 802.15.4 RF Module supports two kinds of over-the-air upgrades:

n Firmware upgrades: upgrading the firmware or bootloader code on a device remotely.
n File System upgrades: placing or replacing the entire file system on a remote device.

An OTA upgrade is performed using two XBee3 RF modules: The client module is the module being
upgraded, and the server module is connected to an external processor (the OTA upgrade server)
and used to send the upgrade to the client. XCTU and Network Manager are capable of acting as an
OTA upgrade server, and are the recommendedmethod for distributing OTA upgrades. See Create an
OTA upgrade server for more information on the OTA upgrade protocol.

Firmware over-the-air upgrades
A firmware OTA upgrade upgrades either just the application firmware or both the application
firmware and the bootloader firmware on a device. OTA firmware upgrades must be to a different
version, re-installing the same version as what is already installed is not supported.

Note Performing an OTA upgrade will erase any file system or bundled MicroPython code on the
target device, even if the OTA upgrade does not complete.

File system over-the-air upgrades
A file system OTA upgrade uses the same protocol as a firmware OTA upgrade, but instead of
changing the device firmware it installs a new image to the target module's file system. This method
does not allow writing individual files, only copying an entire file system image at once. See OTA file
system upgrades for more information on creating and sending file system images.

Scheduled upgrades
When a client has finished downloading the data for an OTA upgrade, it sends a request to the server
asking when to apply the upgrade. The server can instruct the client to upgrade immediately, to wait
a specified amount of time before upgrading, or to wait for a further command from the server to
upgrade. If instructed to wait, the device will keep the downloaded upgrade for the specified time and
then apply it. If a client looses track of time—for example, due to power loss—it will attempt to re-
send the request for an upgrade time to the server and resume waiting. If the device does not receive
a response to this request after a number of attempts, it applies the upgrade immediately.

Note Sleeping devices do not count time towards the upgrade while asleep. The delay for a scheduled
upgrade on a sleeping end device should be calculated only considering the time that device will be
awake.

Different OTA upgrade server tools have varying levels of support for scheduled upgrades. See the
documentation for the OTA upgrade server you are using, or see Create an OTA upgrade server for
information on how to implement scheduled upgrades on a server.

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 802.15.4 RF Module User Guide 261

Create an OTA upgrade server

ZCL firmware upgrade cluster specification
The process, format, and commands used for OTA firmware upgrades are based on the ZCL OTA
Upgrade cluster from the ZCL specification. The specification used is in Zigbee document 07-5123-06.
Chapter 2 describes the general format of ZCL commands and chapter 11 describes the OTA upgrade
cluster in detail. The specification contains a complete description of the OTA upgrade process, and
you should reference it when creating an OTA upgrade server. This guide focuses on differences and
examples specific to the XBee 3 802.15.4 RF Module. Where relevant, we refer to the ZCL specification
document by section, for example (ZCL Spec §11.2.1).

Differences from the ZCL specification
The OTA upgrade process differs from what is described in the ZCL specification in the following ways:

n Setting/querying OTA cluster attributes and parameters (ZCL Spec §11.10, §11.11) is not
supported.

n The WAIT_FOR_DATA status in an Image Block Response Command (ZCL Spec §11.13.8) is not
supported.

n Devices will not automatically discover an OTA upgrade server upon joining a network (ZCL
Spec §11.8). To specify an OTA server set US (OTA Upgrade Server), or leave it at its default
value to accept OTA upgrades from any server.

n Clients do not automatically query the server for an available upgrade. The only way to start an
OTA upgrade is by sending an Image Notify command from the server.

OTA files
Use an OTA file to perform an OTA upgrade. The OTA file format consists of an OTA header describing
what is present in the file followed by one or more sub-elements containing the upgrade data. The
OTA file format is described in the ZCL Spec §11.4.
The OTA file is included alongside other firmware files in each release. The file with the .ota extension
contains the application firmware update, and the file with the .otb extension contains updates for
both the firmware and the bootloader. The recommended bootloader version is listed in each
firmware release's XML file—if the target device has an older version, we strongly recommend that
you perform the OTA update using the .otb file. Updating a device with the same or newer bootloader
version as the recommended version will not change the bootloader, but will update the application.

OTA header
The OTA header contains information about the upgrade data contained in the file. An OTA server
needs to parse this file in order to get information that will be requested by a file. The OTA header
format is (ZCL Spec §11.4.2):

Offset Length Name Description

0 4 OTA upgrade
file identifier

Unique identifier for an OTA file - will always be 0x0BEEF11E.

https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 802.15.4 RF Module User Guide 262

Offset Length Name Description

4 2 OTA header
version

Version for the OTA header format - The OTA header version
supported by XBee 3 firmwares is 0x0100.

6 2 OTA header
length

The length in bytes of this OTA header.

8 2 OTA header
field control

Indicates what optional fields are present.

10 2 Manufacturer
code

The manufacturer code for the image.

12 2 Image type One of two values:

n 0x0000 for a firmware upgrade
n 0x0100 for a file system upgrade

14 4 File version Contains the version information for this upgrade. See File version
definition for more information on how to interpret this field.

Note It is important to parse this value from the OTA file itself
instead of inferring it from the file name, as the software
compatibility number is not included elsewhere.

18 2 Zigbee stack
version

This field is not used for and can be ignored.

20 32 OTA header
string

A human-readable string to identify the OTA file.

52 4 Total image
size

The total size of the OTA file, including the OTA header.

Note This field contains incorrect information in most older
firmware files and should not be used in the update process. The
total size of the file should be determined using an external
method.

Note All fields—except for the OTA header string—are in little endian byte order. Optional fields may
be present at the end of the OTA header, they have been omitted here as they are not used in the
XBee 3 upgrade process.

File version definition
The file version is a 32-bit integer—sent in little-endian byte order—containing information on a
firmware version. It is divided into two fields:

n The most significant byte corresponds to the compatibility number field in the firmware's XML
file—see %C (Hardware/Software Compatibility)—for a description of the compatibility
number's effect on loading firmware.

n The remaining three bytes indicate the firmware version as reported by VR.

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 802.15.4 RF Module User Guide 263

For example, a file version of 0x0100100A indicates that the software compatibility number is 1 and
the version number is 100A. 0x0200300B indicates that the software compatibility number is 2 and
the version is 300B.

Sub-elements
All data after the OTA header is organized into sub-elements. Most OTA files will contain a single sub-
element: the upgrade image. Sub-elements are arranged as tag-length-value triplets, as shown in the
table below.

Offset Length Field name Description

0 2 Sub-
element
tag

The tag for the sub-element, in little-endian format. This is
usually 0x0000 for 'upgrade image'—this is the case for both
firmware upgrades and file system upgrades.

2 4 Sub-
element
length

The length of the sub-element data (n) in little-endian format.

6 n Sub-
element
data

The data to be transferred. This is either the contents of a .gbl
firmware image or a signed file system image.

OTA upgrade process
The OTA upgrade process is performed by sending OTA commands between the client and server. OTA
commands are sent as explicitly addressed packets, as described in OTA commands.
To initiate an OTA upgrade, the upgrade server sends an Image Notify Command, either to a single
device or as a broadcast. After that initial transmission, the OTA process is driven by the client—or
clients, if the Image Notify command is sent as a broadcast and accepted by multiple clients. The
client sends requests to the server to request the image information, download it, and request when
to upgrade. If the client does not receive a response from the server, it retries its request a few times
before aborting the upgrade. The requests sent by the client are designed so that the server does not
have to store any state related to a client's upgrade in progress—it only needs to send the image
notify and respond to requests as they come in. The server can still observe these requests to track
the state of an upgrade if desired, however—for example, to report download progress.
The following diagram shows the sequence of transmissions for an OTA upgrade:

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 802.15.4 RF Module User Guide 264

OTA commands
All OTA commands are sent as explicitly addressed packets with the following address information:

n Source/destination endpoint: 0xE8
n Cluster ID: 0x0019
n Profile ID: 0xC105

The first three payload bytes of the command indicate what the command is and the structure of the
remaining data in the command. All integer values in OTA commands are represented using little-
endian byte order.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
265

Image Notify command
(see ZCL Spec §11.13.3)
The Image Notify command is sent by the server to alert clients that an upgrade is available and prompt them to begin the upgrade. This command can
be sent either as a broadcast or as a unicast:

n If sent as a unicast, the client will respond with a Query Next Image Request if the Image Notify contains valid information, and with a default
response otherwise.

n If sent as a broadcast, all receiving clients will examine any optional fields included and respond only if the information indicates an image
compatible with that device. On large networks, the query jitter parameter can be used to make only a percentage of those receiving the
command respond at a time.

ZCL command format

Offset Length Field Name Description

0 1 Frame control When sending this command, value to set depends on whether the command will be sent as a broadcast or a
unicast:

n if sending a unicast: set this field to 0x09 (server-to-client command).
n if sending a broadcast: set this field to 0x19 (server-to-client command, Default Response disabled).

1 1 Sequence
number

Any sequence number can be used for the Image Notify

2 1 Command ID 0x00 for Image Notify

3 1 Payload type Indicates which fields are present:
0: No optional fields (Query Jitter only)
1: Query Jitter, Manufacturer Code
2: Query Jitter, Manufacturer Code, Image Type
3: Query Jitter, Manufacturer Code, Image Type, File Version

4 1 Query jitter A number, 0-100, must be set to 100 for a unicast. If less than 100 for a broadcast, then each receiving device will
generate a random number and only respond to this command if that generated number is less than the query
jitter.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
266

Offset Length Field Name Description

5 2 Manufacturer
code

Optional. The Manufacturer code for the available image, parsed from the OTA file header.

7 2 Image type Optional. The image type of the available image, parsed from the OTA file header.

9 4 New file
version

Optional. The version parsed from the available image's OTA file header.

Example
To send this command from a server device, use the following Explicit Addressing Command Request - 0x11:

7E 00 21 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 09 01 00 03 64 1E 10 00 00 0A 20 00 01 18

The payload portion of the API frame (starting at offset 23) is shown below:

Frame
control

Sequence
number

Command
ID

Payload
type Query jitter

Manufacturer
code Image type New file version

Data 09 01 00 03 64 1E 10 00 00 0A 20 00 01

Value 0x09 0x01 0x00 0x03 0x64 (100) 0x101E 0x0000 0x0100200A

Description Image
Notify

All fields
present

Client will always
respond

Digi's
manufacturer
code

Firmware
upgrade

Must match value in the OTA
file header.
0x01: Software compatibility
number
0x00200A: Application
version

Additional error cases
If a client receives a unicast Image Notify command that includes any optional fields—Manufacturer ID, Image Type, New File Version—and those fields do
not match what the client is expecting, it will send a default response to the server. See Default Response command for more information on possible
error cases.

Query Next Image Request command
(See ZCL Spec §11.13.4)

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
267

The Query Next Image Request command is sent by the client to ask for information on any available OTA Upgrade. It is sent in response to an Image
Notify from the server.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Will be set to 0x01, indicating a client to server command.

1 1 Sequence
number

Sequence number chosen by the client.

2 1 Command ID 0x01 for Query Next Image Request.

3 1 Field control Indicates which optional fields are present.

4 2 Manufacturer
code

Manufacturer code of the client.

6 2 Image type Image type that the client is requesting:

n 0x0000 for a firmware upgrade
n 0x0100 for a file system upgrade

8 4 Current file
version

Firmware version that is currently running on the client. See File version definition for more information on how to
interpret this field.

Note The compatibility number reported in the current file version field refers to the installed firmware's
compatibility number, which may be different from the %C value of the device.

12 2 Hardware
version

Optional. Hardware version of the client.

Example
This is an example Explicit Rx Indicator (0x91) frame containing a Query Next Image Request that could be received by a server:

7E 00 1E 91 00 13 A2 00 55 66 77 88 FF FE E8 E8 00 19 C1 05 01 01 02 01 00 1E 10 00 00 06 20 00 01 F9

The payload portion of the API frame (starting at offset 21) is shown below:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
268

Frame
control

Sequence
number Command ID Field control

Manufacturer
code Image type Current version

Data 01 02 01 00 1E 10 00 00 06 20 00 01

Value 0x01 0x02 0x01 0x00 0x101E 0x0000 0x01002006

Description Query Next Image
Request

HW version not
present

Digi's
manufacturer code

Firmware
upgrade

0x01: Software
compatibility number
0x002006: Application
version

Query Next Image Response command
(See ZCL Spec §11.13.5)
The Query Next Image Response command should be sent by the server when it receives a Query Next Image request.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Should be set to 0x19, indicating a server-to-client command.

1 1 Sequence
number

Must match the sequence number of the request that prompted this response.

2 1 Command ID 0x02 for Query Next Image Response.

3 1 Status One of three values:

n 0x00 (SUCCESS): An image is available
n 0x98 (NO_IMAGE_AVAILABLE): No upgrade image is available
n 0x7E (NOT_AUTHORIZED): This server isn't authorized to perform an upgrade

Remaining fields are only included if this field contains 0x00 (SUCCESS).

4 2 Manufacturer
code

The Manufacturer code for the available image, parsed from the OTA file header. Must match the manufacturing
code from the Query Next Image request that prompted this response.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
269

Offset Length Field Name Description

6 2 Image type The Image for the available image, parsed from the OTA file header. Must match the manufacturing code from the
Query Next Image request that prompted this response.

8 4 File version The version parsed from the available image's OTA file header.

12 4 Image size The size in bytes of the image that will be sent over the air. This should be the size of the OTA file.

Note This field is handled differently if the client has a firmware version older than 200A. See Does the download
include the OTA header?.

Example
An OTA server could respond to the Query Next Image Request example in the previous section using the following Explicit Addressing Command Request
- 0x11:

7E 00 24 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 19 02 02 00 1E 10 00 00 0A 20 00 01 3A 90 05 00 9D

The payload portion of the API frame (starting at offset 23) is shown below:

Frame
Control

Sequence
Number

Command
ID Status

Manufacturer
Code Image Type File Version Image Size

Data 19 02 02 00 1E 10 00 00 0A 20 00 01 3A 90 05 00

Value 0x19 0x02 0x02 0x00
(SUCCESS)

0x101E 0x0000 0x0100200A 0x0005903A

Description Digi's
manufacturer
code

Firmware
upgrade

Must match value in the OTA
file header.
0x01: Software compatibility
number
0x00200A: Application version

This indicates that the server has version 0x0100200A available for the client to upgrade to, and that the file's size is 0x0005903A (364,6042) bytes.

Image Block Request command
(See ZCL Spec §11.13.6)

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
270

The client sends Image Block Request commands to the server to download the upgrade image data. The client will send requests until it has
downloaded the entire image, as determined by the image size given in the Query Next Image Response from the server.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Will be set to 0x01, indicating a client to server command.

1 1 Sequence
number

Sequence number chosen by the client.

2 1 Command ID 0x03 for Image Block Request.

3 1 Field control Indicates which optional fields are present. No optional fields are currently used by the XBee 3 802.15.4 RF
Module.

4 2 Manufacturer
code

The manufacturer code of the image being downloaded.

6 2 Image type The image type of the image being downloaded.

8 4 File version The version number of the file being downloaded.

12 4 File offset The offset at which to begin the data, from the start of the OTA file.

Note This field is handled differently if the client has a firmware version older than 200A. See Does the download
include the OTA header?

13 1 Maximum data
size

The maximum number of bytes of image data the server may include in its response.

Note Optional fields have been omitted here as they are not used by the XBee 3 802.15.4 RF Module.

Example
This is an example Explicit Receive Indicator - 0x91 containing an Image Block Request that could be received by a server:

7E 00 25 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 01 12 03 00 1E 10 00 00 0A 20 00 01 34 12 00 00 63 CA

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
271

The payload portion of the API frame (starting at offset 21) is shown below:

Frame
control

Sequence
number

Command
ID Field control

Manufacturer
code

Image
type Current version File offset

Maximum
data size

Data 01 12 03 00 1E 10 00 00 0A 20 00 01 34 12 00 00 63

Value 0x01 0x12 0x01 0x00 0x101E 0x0000 0x0100200A 0x00001234 0x63

Description Image Block
Request

No optional
fields present

Digi's
manufacturer
code

Firmware
upgrade

0x01: Software
compatibility number
0x00200A: Application
version

The client is requesting up to 0x63 bytes of data, starting from offset 0x1234.

Image Block Response command
(See ZCL Spec §11.13.8)
The Image Block Response is generated by the OTA server to send the data asked for in an Image Block Request.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Should be set to 0x19 indicating a server-to-client command.

1 1 Sequence
number

Must match the sequence number of the request that prompted this response.

2 1 Command ID 0x05 for Image Block Response.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
272

Offset Length Field Name Description

3 1 Status This field has one of two values, and determines the structure of the remaining fields:

n 0x00 (SUCCESS): Image data is available. The remaining fields must be included.
n 0x95 (ABORT): Instructs the client to abort the download. The remaining fields must not be included.

Note The 0x97 (WAIT_FOR_DATA) status (see ZCL Spec §11.13.8.1) is not supported.

4 2 Manufacturer
code

The Manufacturer code for the available image, parsed from the OTA file header. Must match the manufacturing code
from the request that prompted this response.

6 2 Image type The Image for the available image, parsed from the OTA file header. Must match the manufacturing code from the
request that prompted this response.

8 4 File version The version parsed from the available image's OTA file header. Must match the version number from the request that
prompted this response.

12 4 File offset The offset into the OTA file where the data begins. Must match the offset from the request that prompted this
response.

Note This field is handled differently if the client has a firmware version older than 200A. See Does the download
include the OTA header?

16 1 Data size The number of bytes of data included in this block. This can be any number less than or equal to the maximum data
size value in the request that prompted this response.

17 n Image data Image data starting from the given offset. The length of this field is determined by the value in the preceding field
(Data Size).

Example
An OTA server could respond to the Image Block Request example in the previous section using the following Explicit Addressing Command Request -
0x11:

7E 00 28 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 19 12 05 00 1E 10 00 00 0A 20 00 01 34 12 00 00 03 69
6D 67 D3

The payload portion of the API frame (starting at offset 23) is shown below:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
273

Frame
control

Sequence
number Command ID Status

Manufacturer
code

Image
type File version File offset

Data
size

Image
data

Data 19 12 05 00 1E 10 00 00 0A 20 00 01 34 12 00 00 03 69 6d
67

Value 0x19 0x12 0x05 0x00
(SUCCESS)

0x101E 0x0000 0x0100200A 0x00001234 0x03 69 6d
67

Description Image Block
Response

Digi's
manufacturer
code

Firmware
upgrade

0x01: Software
compatibility number
0x00200A: Application
version

This response contains three bytes of data starting at offset 0x1234. The data size value in this example is very small—three bytes—for simplicity; since
any size less than or equal to the client's requestedmaximum is allowed this is a valid frame, but smaller image blocks will increase the time the OTA
upgrade takes.

Upgrade End Request command
(See ZCL Spec §11.13.9)
The Upgrade End Request command is sent by the client when it finishes a download, whether successfully or not.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Will be set to 0x01, indicating a client to server command.

1 1 Sequence
number

Sequence number chosen by the client.

2 1 Command ID 0x06 for Upgrade End Request.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
274

Offset Length Field Name Description

3 1 Status One of four values indicating the status of the download.

n 0x00 (SUCCESS): The client successfully downloaded and verified the image.
n 0x96 (INVALID_IMAGE): The client aborted the download because the downloaded image was invalid or

corrupted.
n 0x95 (ABORT): The client aborted the download for another reason.
n 0x99 (REQUIRE_MORE_IMAGE): The download completed, but additional files are needed for the upgrade. This

status is not used by the XBee 3 802.15.4 RF Module.

The value of this field determines what response the server should send. If the status is 0x00 (SUCCESS), the server
should respond with an Upgrade End Response command. Otherwise, the server should respond with a Default
Response command with the SUCCESS status.

4 2 Manufacturer
code

The manufacturer code of the image being downloaded.

6 2 Image type The image type of the image being downloaded.

8 4 File version The version of the image being downloaded

Exampe
This is an example Explicit Receive Indicator - 0x91 containing an Upgrade End Request that could be received by a server:

7E 00 1E 91 00 13 A2 00 55 66 77 88 FF FE E8 E8 00 19 C1 05 01 01 95 06 00 1E 10 00 00 0A 20 00 01 5D

The payload portion of the API frame (starting at offset 21) is shown below:

Frame
control

Sequence
number Command ID Status Manufacturer code Image type File version

Data 01 95 06 00 1E 10 00 00 0A 20 00 01

Value 0x01 0x95 0x06 0x00
(SUCCESS)

0x101E 0x0000 0x0100200A

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
275

Frame
control

Sequence
number Command ID Status Manufacturer code Image type File version

Description Upgrade End
Request

Digi's manufacturer
code

Firmware
upgrade

0x01: Software compatibility
number
0x00200A: Application version

The client has completed the download of version 0x0100200A. The server should respond with an Upgrade End Response command.

Upgrade End Response command
(See ZCL Spec §11.13.9.6)
The Upgrade End Response command is sent by the server when it receives an Upgrade End Request with the SUCCESS status. This command instructs
the device to perform the upgrade, and can be used to schedule an upgrade for a later time. An Upgrade End Response can also be sent without a
request from a client if the client is waiting for an upgrade—scheduled by a previous Upgrade End Response—to change the time to wait for that
upgrade.

ZCL command format

Offset Length Field Name Description

0 1 Frame control Should be set to 0x19 indicating a server-to-client command.

1 1 Sequence
number

If this command is sent in response to an Upgrade End request, the sequence number should match the one from
that request.

2 1 Command ID 0x07 for Upgrade End Response.

3 2 Manufacturer
code

The Manufacturer code for the available image, parsed from the OTA file header. Must match the manufacturer code
from the request that prompted this response.

5 2 Image type The Image for the available image, parsed from the OTA file header. Must match the image type from the request
that prompted this response.

7 4 File version The version parsed from the available image's OTA file header. Must match the version number from the request that
prompted this response.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
276

Offset Length Field Name Description

11 4 Current time The current time, used for scheduled upgrades. See Schedule an upgrade for more information.

15 4 Upgrade
time

The scheduled upgrade time, used for scheduled upgrades. See Schedule an upgrade for more information.

If the upgrade should be performed immediately and not scheduled for a later time, the Current Time and Upgrade Time fields should be set to the same
value less than 0xFFFFFFFF.

Example
An OTA server could respond to the Image Block Request example in the previous section using the following Explicit Addressing Command Request -
0x11:

7E 00 27 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 19 95 07 1E 10 00 00 0A 20 00 01 00 00 00 00 00 00 00
00 D4

The payload portion of the API frame (starting at offset 23) is shown below:

Frame
control

Sequence
number Command ID

Manufacturer
code Image type File version

Current
time

Upgrade
time

Data 19 95 07 1E 10 00 00 0A 20 00 01 00 00 00 00 00 00 00

Value 0x19 0x95 0x07 0x101E 0x0000 0x0100200A 0x00000000 0x00000000

Description Upgrade End
Response

Digi's
manufacturer
code

Firmware
upgrade

0x01: Software
compatibility number
0x00200A: Application
version

With the current time and upgrade time both set to 0, the device will reboot and install the upgrade immediately.

Default Response command
(See ZCL Spec §2.5.12)
A Default Response command is sent when a response is needed but there is no other command frame suited to the response.

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
277

During the OTA Upgrade process, the client will send a default response with an error status if it receives an invalid command from the server. The only
time the server needs to send a default response is when it receives an Upgrade End Request with an error status; the server responds with a default
response with status 0x00 (SUCCESS) status to indicate that the request was received.

ZCL command format

Offset Length Field Name Description

0 1 Frame control If command is sent by the client: 0x10
If command is sent by the server: 0x18

1 1 Sequence number Must match the sequence number of the command that prompted this Default Response.

2 1 Command ID 0x0B for Default Response.

3 1 (Source) command identifier The command ID of the command that prompted this Default Response.

4 1 Status code A status code indicating success or an error. A full list of status codes, see ZCL Spec §2.6.3.

Error messages sent by the client
The client will send a default response to the server when an error occurs. The significance of the status code in this message depends on what server
command prompted the default response. The Handling Error Cases section of each command's section in the ZCL specification contains detailed
information on what errors a command can produce. Some errors that can be sent by the client are listed below:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
278

Source Command
Identifier Status Description

0x00
(Image Notify)

0x80 (MALFORMED_
COMMAND)

Either one of the errors form ZCL Spec §11.13.3.5.1, or manufacturer code or image type is not valid.

0x70 (REQUEST_
DENIED)

OTA Upgrades have been disabled on this device.

0x8A (DUPLICATE_
EXISTS)

The new version is not valid:

n For firmware upgrades, the new firmware version must be different than what is installed on the
device. Upgrades to the same version are not supported.

n For file system upgrades, the version indicates what firmware version the image supports. It must
match the currently installed firmware.

Make sure the firmware version in the Image Notify is being parsed from the OTA header in the upgrade
image.

0x85 (INVALID_
FIELD)

Firmware is incompatible with the client's %C (Hardware Compatibility) value.

0x02
(Query Next Image
Response)

0x80 (MALFORMED_
COMMAND)

The format of the command is invalid (see ZCL Spec §11.13.5.5).

0x89
(INSUFFICIENT_
SPACE)

The image is too large for the client to store.

0x05
(Image Block
Response)

0x80 (MALFORMED_
COMMAND)

The format of the command is invalid (See ZCL Spec §11.13.8.5).

0x07
(Upgrade End
Response)

0x80 (MALFORMED_
COMMAND)

The format of the command is invalid (See ZCL Spec §11.13.9.9).

Example
After unicasting an Image Notify command to a client, the server may receive the following Explicit Receive Indicator - 0x91 frame containing a Default
Response:

OTA
firm

w
are/file

system
upgrades

Create
an

OTA
upgrade

server

DigiXBee®3
802.15.4

RF
M
odule

UserGuide
279

7E 00 17 91 00 13 A2 00 55 66 77 88 FF FE E8 E8 00 19 C1 05 01 10 0C 0B 00 8A A1

The payload portion of the API frame (starting at offset 21) is shown below:

Frame control Sequence number Command ID Source command identifier Status

Data 10 0C 0B 00 8A

Value 0x10 0x0C 0x0C 0x00 0x8A (DUPLICATE_EXISTS)

Description Default Response Image Notify

The source command identifier field indicates that the error is in response to an image notify, and the sequence number will match that of the Image
Notify command sent by the server. According to the table above, a DUPLICATE_EXISTS status for an Image Notify means that the firmware version is
invalid—the device is already running the firmware version that the server is trying to send.
When the server needs to send a default response, it can do so using an Explicit Addressing Command Request - 0x11. For example, to send a Default
Response with a SUCCESS status in response to an Upgrade End Request:

7E 00 19 11 01 00 13 A2 00 11 22 33 44 FF FE E8 E8 00 19 C1 05 00 00 18 41 0B 06 00 78

The payload portion of the API frame (starting at offset 23) is shown below:

Frame control Sequence number Command ID Source command identifier Status

Data 18 41 0B 06 00

Value 0x18 0x41 0x0B 0x06 0x00 (SUCCESS)

Description Default Response Upgrade End Response

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 802.15.4 RF Module User Guide 280

Handling unrecognized commands
If the server receives a command with an unrecognized command ID, it should respond with a default
response with status 0x81 (UNSUP_CLUSTER_COMMAND).

Schedule an upgrade
The current time and upgrade time fields of the Upgrade End Response command can be used to
schedule an upgrade for some time in the future. The time can for the upgrade can be scheduled in
several ways:

Current time
value

Upgrade time
value Effect

0x00000000-
0xFFFFFFFE

Equal to current
time

The device will upgrade immediately.

0x00000000 0x00000001-
0xFFFFFFFE

Delayed upgrade: the device will upgrade after the number of
seconds indicated by the upgrade time value.

0x00000001-
0xFFFFFFFE
(Current time
in seconds
since
midnight Jan
1, 2000)

Any value
greater than
current time and
less than
0xFFFFFFFF
(Intended
upgrade time in
seconds since
midnight Jan 1,
2000)

Scheduled upgrade: the device will determine how long to wait
by subtracting current time from upgrade time, and wait that
long before upgrading.

Any 0xFFFFFFFF Prompted upgrade: The device will not upgrade, and will wait
indefinitely to receive another Upgrade End Response with the
server. The second upgrade end response can schedule an
upgrade with any of the above methods.

Note When performing a scheduled upgrade, we recommend that the OTA upgrade server continue to
monitor for and respond to OTA commands until after the time the upgrade is meant to be applied. If
the client loses power while waiting to apply a scheduled upgrade, it will send another Upgrade End
Request to the server when it regains power in an attempt to resume the schedule. If the client does
not receive a response from the server after a few tries, it applies the upgrade without confirmation
from the server.

Scheduled upgrades on sleeping devices
To schedule an upgrade, an XBee 3 802.15.4 RF Module makes use of internal software timers, which
only count time while the device is awake. So a sleeping device takes significantly longer to apply the
scheduled upgrade than a non-sleeping device. Consider this limitation when scheduling an upgrade
on a sleeping device.

Formula for estimating when a sleeping device will apply an upgrade
upgrade_delay = number of seconds the upgrade was scheduled for (upgradeTime- currentTime
fields in the Upgrade End Response frame)

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 802.15.4 RF Module User Guide 281

sleep_time = amount of time the device is estimated to be asleep (SP for an asynchronous sleeping
device)
wake_time = amount of time the device is estimated to be awake (ST for an asynchronous sleeping
device)
total_time = sleep_time + wake_time
expected_upgrade_delay = upgrade_delay * (total_time / wake_time)

Asynchronous cyclic sleep scheduled upgrades
A device that is configured for asynchronous cyclic sleep will only be awake for a few milliseconds at a
time, therefore we do not recommend that you schedule an upgrade for a sleeping node with this
configuration. However, if the device is configured to always stay awake for ST time then the
scheduled upgrade can be estimated by using the above formula—where wake_time = ST and sleep_
time = SP. You can configure a device to always stay awake for ST by setting SO bit 8 to one—for
example, SO = 0x80).

Pin sleep scheduled upgrades
Since the device only counts time while it is awake, scheduling an upgrade on a pin sleeping device
may be unpredictable. However, if a pin sleeping device has predictable sleep patterns it is possible to
estimate when a scheduled upgrade will be applied. The sleep estimate formula can be applied to a
pin sleeping device to estimate when it will apply the upgrade.

Aggressively sleeping devices
If a device is asynchronously sleeping, and keeping it awake for all of ST time is undesired, then we
recommend performing a scheduled upgrade in the following manner:

1. Configure the sleeping node for indirect messaging:
a. Configure the sleeping device with the following parameters:

n CE = 0 (join network)
n DH, DL should be set to match SH, SL of the OTA server device

b. Make sure that ST and SP of the sleeping device and OTA server radio match.
c. Set all of the transmit option fields of the API frames sent to the OTA server device to

0x40.
2. Download the firmware/file system image to the sleeping device as described in this section.

a. When sending the Upgrade End Response frame set the upgradeTime to 0xFFFFFFFF—
instructing the sleeping device to wait for another upgrade end request before applying
the upgrade.

3. Wait for the desired amount of time to pass.
4. When the time to have the sleeping device apply its upgrade has arrived, send a second

Upgrade End Response to the sleeping device with the currentTime and upgradeTime fields
both set to 0x0000. This causes the sleeping device to apply the upgrade immediately.

Considerations for older firmware versions
Some changes need to be made to this OTA upgrade process for some previous versions of the
software.

OTA firmware/file system upgrades Create an OTA upgrade server

Digi XBee® 3 802.15.4 RF Module User Guide 282

All versions older than 200A

n When the firmware is sent over the air it must be sent without including the OTA header and
sub-element tags. See Does the download include the OTA header?

n These older versions will not retry requests; if a packet from the server is dropped, you may
need to restart the upgrade.

Does the download include the OTA header?
Most OTA files consist of an OTA header, a sub-element tag, and a single sub-element: The upgrade
image. For firmware versions 200A and newer, the entire OTA file is sent to the client during an OTA
Upgrade. However, for versions older than 200A, only the contents of the file's single sub-element
should be sent—not the OTA header or the sub-element tag. This affects several fields in the upgrade
process.
When dealing with these two methods it is useful to know the image offset of the OTA file—that is,
the offset at which the upgrade image data actually begins. This can be calculated by taking the size
of the OTA header—which can be parsed from near the beginning of the OTA file—and adding six bytes
for the sub-element header: two bytes for the tag, four bytes for the length.

Command Field

Value when sending
without header
(pre-200A)

Value
when
sending
with
header
(200A
and
later) Notes

Query
Next
Image
Response

Image
size

The size of the upgrade
image parsed from the
first sub-element tag's
length value, or the
total size of the OTA
file minus the image
offset.

The
total
size of
the OTA
file.

In either case, this is the total number of
bytes that the client needs to download.
This value should never be determined by
reading the Total Image Size field from
the OTA header, as that field contains
incorrect information onmost older
firmware files.

Image
Block

File
offset

This refers to the offset
from the start of the
upgrade image data—
add the image offset to
this value to get the
offset into the OTA file.

This
refers
to the
offset
into the
OTA file.

Note For compatibility with older OTA upgrade servers, newer firmware versions support both
methods for a firmware upgrade. File system upgrades only support the method corresponding to the
installed firmware version, as described above. We recommend using the newer method where
possible to ensure compatibility with future releases.

OTA file system upgrades

After a FOTA update, all file system data and bundled MicroPython code is erased. To continue running
code, a new file system needs to be sent to the device after the firmware update is complete. This
section contains information on how to update the file system of remote devices over the air.

OTA file system update process 284
OTA file system updates using XCTU 284
OTA file system updates: OEM 288

Digi XBee® 3 802.15.4 RF Module User Guide 283

OTA file system upgrades OTA file system update process

Digi XBee® 3 802.15.4 RF Module User Guide 284

OTA file system update process
Since OTA file system updates are signed, remote devices must be configured so that they can
validate incoming updates. To set up a network for OTA file system updates:

1. Generate a public/private Elliptic Curve Digital Signature Algorithm (ECDSA) signing key pair.
2. Using the generated public key, set FK (File System Public Key) on all devices that will receive

OTA file system updates.

Note You cannot set FK remotely. You must either set FK before the XBee 3 802.15.4 RF Module is
deployed, or else serial access to the device is needed to set it.

To perform an OTA file system update:

1. On a local device, create a copy of the file system that you want to send over the air.
2. Create an OTA file system image, signed using the private key generated previously.
3. Perform an OTA update using the created OTA file.

Note The local device used to create the file system image must have the same firmware version
installed as the target device or the file system will be rejected. Use VR (Firmware Version) to check
the version number on both the staging and target devices.

You can perform all of these steps automatically through XCTU or manually using other tools.

OTA file system updates using XCTU
Use the following steps to perform a file system update OTA using XCTU:

1. Generate a public/private key pair
2. Set the public key on the XBee 3 device
3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
XCTU provides an ECDSA key pair generator that you can use to store a public/private key pair in .pem
files. To access the Generate file system key pair dialog:

1. Open the File System Manager dialog box.
2. Click Keys as shown below.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee® 3 802.15.4 RF Module User Guide 285

3. Click Generate in the Generate file system key pair dialog.
4. Save both the keys in a safe location and close the dialog box.

Set the public key on the XBee 3 device
1. Open the configuration view of the target device in XCTU and go to the File System category.
2. In the File System Public Key row, click Configure.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee® 3 802.15.4 RF Module User Guide 286

3. In the Configure File System Public Key dialog box, click Browse and choose the .pem file
that you saved the public key into. Once this is done, the HEX value of the public key is visible
under the Public key section on the dialog box as shown.

4. Click OK to ensure that the key gets written into the device.

Note This can be only be done locally. XBee 3 firmware DOES NOT support remotely setting the file
system public key at this time.

Create the OTA file system image
To create the OTA file system image:

1. Open the File System Manager dialog box.
2. Open a connection on the device that you want to generate the OTA file system image from.
3. Click FS Image.
4. In the Generate a signed file system image window that displays, click Browse and choose

the .pem file that the private key was stored in.
5. Once the path shows up on the Private Key file field, click Save to assign the .fs.ota an

appropriate file name and location.
6. Save the file.

You will be prompted with a File system image successfully saved dialog box if the file was
successfully generated.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee® 3 802.15.4 RF Module User Guide 287

Perform the OTA file system update
1. To add the target device, click Discover radios in the same network from the source device.
2. Enter Configuration mode on the remote device.
3. Click the down arrow next to the Update button and choose Update File System.

4. Choose the OTA file system image (.fs.ota) that the target node needs to be updated to.
5. Click Open.

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 802.15.4 RF Module User Guide 288

Once the file system image is completely transferred andmounted on the remote device, XCTU
informs you that the file system has been updated successfully.

OTA file system updates: OEM
Use the following steps to perform a file system update OTA using OEM tools:

1. Generate a public/private key pair
2. Set the public key on the XBee 3 device

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 802.15.4 RF Module User Guide 289

3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
Generate ECDSA signing keys using secp256r1 curve parameters (also known as prime256v1 or NIST
P-256).
To generate a public/private key pair using OpenSSL, run the following command:

openssl ecparam -name prime256v1 -genkey -outform pem -out keypair.pem

To extract the private key from the key pair generated above:

openssl pkcs8 -topk8 -inform pem -in pair.pem -outform pem -nocrypt -out
private.pem

To extract the public key from the key pair generated above:

openssl ec -in keypair.pem -pubout -out public.pem

Set the public key on the XBee 3 device
The public keys generated by XCTU and OpenSSL are stored in *.pem files. These files need to be
parsed to get the value to use when setting FK. To parse a public key file, run:

openssl asn1parse -in public.pem -dump

The command will produce something like the following output:

0:d=0 hl=2 l= 89 cons: SEQUENCE
2:d=1 hl=2 l= 19 cons: SEQUENCE
4:d=2 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
13:d=2 hl=2 l= 8 prim: OBJECT :prime256v1
23:d=1 hl=2 l= 66 prim: BIT STRING

0000 - 00 04 95 50 aa 55 b6 f5-5d 99 4d d8 15 d1 71 57 ...P.U..].M...qW
0010 - 51 80 d5 14 ec 1f 6a 15-51 a2 c4 b8 0f 77 10 8a Q.....j.Q....w..
0020 - 33 a3 80 07 47 40 14 8b-5c a7 4c 78 02 fc 4d 82 3...G@..\.Lx..M.
0030 - 90 4b 39 98 62 a1 1d 97-6e 78 fb 54 62 06 d2 41 .K9.b...nx.Tb..A
0040 - c7 3b

The public key should be 65 bytes long - it is the BIT STRING value at the end, with the leading 00
omitted; in this case:

049550aa55b6f55d994dd815d171575180d514ec1f6a1551a2c4b80f77108a33a380074740148b5ca
74c7802fc4d82904b399862a11d976e78fb546206d241c73b

Create the OTA file system image
You can create a file system image outside of XCTU using any utility that can perform ECDSA signing.
These instructions show how to do so using OpenSSL. To create an OTA file system image, use the
following steps.

Create a staged file system
In order to create a usable file system image, first create a 'staged' copy of the file system you want
to send on a local device.

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 802.15.4 RF Module User Guide 290

Use the FS command or MicroPython to load all of the files that you want to send onto the local
staging device.

Note The staging device must have the same firmware version installed as the target device or the
file system will be rejected. Use the VR command to check the version number on both the staging
and target devices.

Download the file system image
Run the command ATFS GET /sys/xbfs.bin to download an image of the file system from the staging
device. The file is transferred using the YMODEM protocol. See File system for more information on
downloading files using FS GET.

Pad the file system image
The file system image must be a multiple of 2048 bytes long before it is signed. Using hex editing
software, add 0xFF bytes to the end of the downloaded image until size of the file is a multiple of 2048
(0x800 in hex).

Calculate the image signature
Once the image has been padded to a multiple of 2048 bytes, it is ready to be signed. The ECDSA
signature should be calculated using SHA256 as the hash algorithm.
Assuming a public/private key pair has been generated as described in Generate a public/private key
pair, that the private key is named private.pem, and that the padded image is named xbfs.bin; this
can be done using OpenSSL with the following command:

openssl dgst -sha256 -sign private.pem -binary -out sig.bin xbfs.bin

sig.bin will contain the signature for the image.
Append the calculated signature to the image
The signature should be between 70 and 72 bytes, and it should be appended to the padded image.

Create the OTA file
Put the image into an OTA file that follows the format specified in ZigBee Document 095264r23. The
file should consist of:

n An OTA header
n An upgrade image sub-element tag
n The padded, signed image data

The OTA file must begin with an OTA header. See The OTA header for information on the format of the
header. The image type should be 0x0100 for a file system image upgrade.
The sub-element tag should come before the image data. The sub-element tag follows the format
described in section 6.3.3 of ZigBee Document 095264r23. It consists of 6 bytes: the first 2 bytes are
the tag id and should be set to 0x0000. The next 4 bytes contain the length of the file system image in
little-endian format.

Perform the OTA file system update
The process for performing an OTA file system update is the same as the process for performing a
FOTA upgrade, as described in Over-the-air firmware/filesystem upgrade process for 802.15.4. Note

https://web.archive.org/web/20171031170452/http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf
https://web.archive.org/web/20171031170452/http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf

OTA file system upgrades OTA file system updates: OEM

Digi XBee® 3 802.15.4 RF Module User Guide 291

that the data that goes in the image blocks starts at the beginning of the image data, after the OTA
header and sub-element tag.

	Digi XBee® 3 802.15.4 RF Module User Guide
	Applicable firmware and hardware
	Change the firmware protocol
	Regulatory information

	Get started
	Verify kit contents
	Assemble the hardware
	Plug in the XBee 3 802.15.4 RF Module
	Unplug an XBee 3 802.15.4 RF Module

	Configure the device using XCTU
	Configure remote devices
	Configure the devices for a range test
	Perform a range test
	XBIB-C Micro Mount reference
	XBIB-C SMT reference
	XBIB-CU TH reference
	XBIB-C-GPS reference
	Interface with the XBIB-C-GPS module
	I2C communication
	UART communication
	Run the MicroPython GPS demo

	Get started with MicroPython
	About MicroPython
	MicroPython on the XBee 3 802.15.4 RF Module
	Use XCTU to enter the MicroPython environment
	Use the MicroPython Terminal in XCTU
	MicroPython examples
	Example: hello world
	Example: enter MicroPython paste mode
	Example: use the time module
	Example: AT commands using MicroPython
	MicroPython networking and communication examples

	Exit MicroPython mode
	Other terminal programs
	Tera Term for Windows

	Use picocom in Linux
	Micropython help ()

	Secure access
	Secure Sessions
	Configure the secure session password for a device
	Start a secure session
	End a secure session

	Secured remote AT commands
	Secure a node against unauthorized remote configuration
	Remotely configure a node that has been secured

	Send data to a secured remote node
	End a session from a server
	Secure Session API frames
	Secure transmission failures
	Data Frames - 0x10 and 0x11 frames
	Remote AT Commands- 0x17 frames

	File system
	Overview of the file system
	Directory structure
	Paths
	Limitations
	XCTU interface

	Get started with BLE
	Enable BLE on the XBee 3 802.15.4 RF Module
	Enable BLE and configure the BLE password
	Get the Digi XBee Mobile phone application
	Connect with BLE and configure your XBee 3 device

	BLE reference
	BLE advertising behavior and services
	Device Information Service
	XBee API BLE Service
	API Request characteristic
	API Response characteristic

	Configure the XBee 3 802.15.4 RF Module
	Software libraries
	Firmware over-the-air (FOTA) update
	Custom defaults
	Set custom defaults
	Restore factory defaults
	Limitations

	Custom configuration: Create a new factory default
	Set a custom configuration
	Clear all custom configuration on a device

	XBee bootloader
	Send a firmware image
	XBee Network Assistant
	XBee Multi Programmer

	Modes
	Transparent operating mode
	Serial-to-RF packetization

	API operating mode
	Command mode
	Enter Command mode
	Troubleshooting
	Send AT commands
	Response to AT commands
	Apply command changes
	Make command changes permanent
	Exit Command mode

	Idle mode
	Transmit mode
	Receive mode

	Serial communication
	Serial interface
	Serial receive buffer
	Serial transmit buffer
	UART data flow
	Serial data

	Flow control
	Clear-to-send (CTS) flow control
	RTS flow control

	SPI operation
	SPI communications
	Full duplex operation
	Low power operation
	Select the SPI port
	Force UART operation

	I/O support
	Legacy support
	Mixed network considerations
	Digital I/O support
	Analog I/O support
	Monitor I/O lines
	I/O sample data format
	Legacy data format
	Enhanced data format

	API frame support
	On-demand sampling
	Example: Command mode
	Example: Local AT command in API mode
	Example: Remote AT command in API mode

	Periodic I/O sampling
	Source
	Destination
	Multiple samples per packet
	Example: Remote AT command in API mode

	Digital I/O change detection
	I/O line passing
	Digital line passing
	Example: Digital line passing
	Analog line passing
	Example: Analog line passing

	Output sample data
	Output control
	I/O behavior during sleep
	Digital I/O lines
	Analog and PWM I/O Lines

	Networking
	Networking terms
	MAC Mode configuration
	Clear Channel Assessment (CCA)
	CCA operations

	Retries configuration
	Transmit status based on MAC mode and XBee retries configurations
	Addressing
	Send packets to a specific device in Transparent API mode
	Addressing modes

	Peer-to-peer networks
	Master/slave networks
	End device association
	Coordinator association
	Association indicators
	Modem status messages
	Association indicator status codes

	Direct and indirect transmission
	Configure an indirect messaging coordinator
	Send indirect messages
	Receive indirect messages

	Encryption
	Maximum payload
	Maximum payload rules
	Maximum payload summary tables
	Work with Legacy devices

	Network commissioning and diagnostics
	Remote configuration commands
	Send a remote command
	Apply changes on remote devices
	Remote command responses

	Node discovery
	About node discovery
	Node discovery in compatibility mode
	Directed node discovery
	Directed node discovery in compatibility mode
	Destination Node

	Sleep support
	Sleep modes
	Pin Sleep mode (SM = 1)
	Cyclic Sleep mode (SM = 4)
	Cyclic Sleep with Pin Wake-up mode (SM = 5)
	MicroPython sleep with optional pin wake (SM = 6)

	Sleep parameters
	Sleep pins
	Sleep conditions

	AT commands
	Networking commands
	CH (Operating Channel)
	ID (Extended PAN ID)
	MM (MAC Mode)
	C8 (Compatibility Options)

	Discovery commands
	NI (Node Identifier)
	DD (Device Type Identifier)
	NT (Node Discover Timeout)
	NO (Network Discovery Options)
	ND (Network Discover)
	DN (Discover Node)
	AS (Active Scan)

	Coordinator/End Device configuration commands
	CE (Device Role)
	A1 (End Device Association)
	A2 (Coordinator Association)
	SC (Scan Channels)
	SD (Scan Duration)
	DA (Force Disassociation)
	AI (Association Indication)

	802.15.4 Addressing commands
	SH (Serial Number High)
	SL (Serial Number Low)
	MY (16-bit Source Address)
	DH (Destination Address High)
	DL (Destination Address Low)
	RR (XBee Retries)
	TO (Transmit Options)
	NP (Maximum Packet Payload Bytes)

	Security commands
	EE (Encryption Enable)
	KY (AES Encryption Key)
	DM (Disable Features)
	US (OTA Upgrade Server)

	Secure Session commands
	SA (Secure Access)
	*S (Secure Session Salt)
	*V, *W, *X, *Y (Secure Session Verifier)

	RF interfacing commands
	PL (TX Power Level)
	PP (Output Power in dBm)
	CA (CCA Threshold)
	RN (Random Delay Slots)

	MAC diagnostics commands
	DB (Last Packet RSSI)
	EA (ACK Failures)
	EC (CCA Failures)
	ED (Energy Detect)

	Sleep settings commands
	SM (Sleep Mode)
	SP (Cyclic Sleep Period)
	ST (Cyclic Sleep Wake Time)
	DP (Disassociated Cyclic Sleep Period)
	SN (Number of Sleep Periods)
	SO (Sleep Options)
	FP (Force Poll)

	MicroPython commands
	PS (Python Startup)
	PY (MicroPython Command)

	File System commands
	FS (File System)
	FK (File System Public Key)

	Bluetooth Low Energy (BLE) commands
	BT (Bluetooth Enable)
	BL (Bluetooth MAC Address)
	BI (Bluetooth Identifier)
	BP (Bluetooth Power)
	$S (SRP Salt)
	$V, $W, $X, $Y commands (SRP Salt verifier)

	API configuration commmands
	AP (API Enable)
	AO (API Output Options)
	AZ (Extended API Options)

	UART interface commands
	BD (UART Baud Rate)
	NB (Parity)
	SB (Stop Bits)
	FT (Flow Control Threshold)
	RO (Packetization Timeout)

	AT Command options
	CC (Command Character)
	CT (Command Mode Timeout)
	GT (Guard Times)
	CN (Exit Command mode)

	UART pin configuration commands
	D6 (DIO6/RTS Configuration)
	D7 (DIO7/CTS Configuration)
	P3 (DIO13/UART_DOUT Configuration)
	P4 (DIO14/UART_DIN Configuration)

	SMT/MMT SPI interface commands
	P5 (DIO15/SPI_MISO Configuration)
	P6 (DIO16/SPI_MOSI Configuration)
	P7 (DIO17/SPI_SSEL Configuration)
	P8 (DIO18/SPI_CLK Configuration)
	P9 (DIO19/SPI_ATTN Configuration)

	I/O settings commands
	D0 (DIO0/ADC0/Commissioning Configuration)
	CB (Commissioning Button)
	D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)
	D2 (DIO2/ADC2/TH_SPI_CLK Configuration)
	D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)
	D4 (DIO4/TH_SPI_MOSI Configuration)
	D5 (DIO5/Associate Configuration)
	D8 (DIO8/DTR/SLP_Request Configuration)
	D9 (DIO9/ON_SLEEP Configuration)
	P0 (DIO10/RSSI/PWM0 Configuration)
	P1 (DIO11/PWM1 Configuration)
	P2 (DIO12/TH_SPI_MISO Configuration)
	PR (Pull-up/Down Resistor Enable)
	PD (Pull Up/Down Direction)
	M0 (PWM0 Duty Cycle)
	M1 (PWM1 Duty Cycle)
	RP (RSSI PWM Timer)
	LT (Associate LED Blink Time)

	I/O sampling commands
	IS (I/O Sample)
	IR (Sample Rate)
	IC (DIO Change Detect)
	AV (Analog Voltage Reference)
	IT (Samples before TX)
	IF (Sleep Sample Rate)
	IO (Digital Output Level)

	I/O line passing commands
	IA (I/O Input Address)
	IU (I/O Output Enable)
	T0 (D0 Timeout Timer)
	T1 (D1 Output Timeout Timer)
	T2 (D2 Output Timeout Timer)
	T3 (D3 Output Timeout Timer)
	T4 (D4 Output Timeout Timer)
	T5 (D5 Output Timeout Timer)
	T6 (D6 Output Timeout Timer)
	T7 (D7 Output Timeout Timer)
	T8 (D8 Output Timer)
	T9 (D9 Output Timer)
	Q0 (P0 Output Timer)
	Q1 (P1 Output Timer)
	Q2 (P2 Output Timer)
	PT (PWM Output Timeout)

	Location commands
	LX (Location X—Latitude)
	LY (Location Y—Longitude)
	LZ (Location Z—Elevation)

	Diagnostic commands - firmware/hardware information
	VR (Firmware Version)
	VL (Version Long)
	VH (Bootloader Version)
	HV (Hardware Version)
	R? (Power Variant)
	%C (Hardware/Software Compatibility)
	%V (Supply Voltage)
	TP (Module Temperature)
	CK (Configuration CRC)
	%P (Invoke Bootloader)

	Memory access commands
	FR (Software Reset)
	AC (Apply Changes)
	WR (Write)
	RE (Restore Defaults)

	Custom Default commands
	%F (Set Custom Default)
	!C (Clear Custom Defaults)
	R1 (Restore Factory Defaults)

	Operate in API mode
	API mode overview
	Use the AP command to set the operation mode
	API frame format
	API operation (AP parameter = 1)
	API operation with escaped characters (AP parameter = 2)

	Frame descriptions
	64-bit Transmit Request - 0x00
	Description
	Format
	Examples

	16-bit Transmit Request - 0x01
	Description
	Format
	Examples

	Local AT Command Request - 0x08
	Description
	Format
	Examples

	Queue Local AT Command Request - 0x09
	Description
	Format
	Examples

	Transmit Request - 0x10
	Description
	Transmit options bit field
	Examples

	Explicit Addressing Command Request - 0x11
	Description
	64-bit addressing
	16-bit addressing
	Reserved endpoints
	Reserved cluster IDs
	Reserved profile IDs
	Transmit options bit field
	Examples

	Remote AT Command Request - 0x17
	Description
	Format
	Examples

	BLE Unlock Request - 0x2C
	Description
	Format
	Phase tables
	Examples

	User Data Relay Input - 0x2D
	Description
	Use cases
	Format
	Error cases
	Examples

	Secure Session Control - 0x2E
	Description
	Format
	Examples

	Description
	Format
	Examples
	64-bit unicast

	16-bit Receive Packet - 0x81
	Description
	Format
	Examples

	64-bit I/O Sample Indicator - 0x82
	Description
	Format

	16-bit I/O Sample Indicator - 0x83
	Description
	Format

	Description
	Format
	Examples
	Set local command parameter
	Query local command parameter

	Transmit Status - 0x89
	Description
	Format
	Delivery status codes
	Examples

	Modem Status - 0x8A
	Description
	Format

	Modem status codes
	Examples

	Extended Transmit Status - 0x8B
	Description
	Format
	Delivery status codes
	Examples

	Receive Packet - 0x90
	Description
	Format
	Examples

	Explicit Receive Indicator - 0x91
	Description
	Format
	Examples

	I/O Sample Indicator - 0x92
	Description
	Format
	Examples

	Remote AT Command Response- 0x97
	Description
	Format
	Examples

	Extended Modem Status - 0x98
	Description
	Format
	Secure Session status codes
	Examples

	BLE Unlock Response - 0xAC
	Description

	Description
	Format
	Error cases
	Examples
	Relay from Bluetooth (BLE)

	Secure Session Response - 0xAE
	Description
	Format
	Examples

	OTA firmware/file system upgrades
	Overview
	Firmware over-the-air upgrades
	File system over-the-air upgrades

	Scheduled upgrades
	Create an OTA upgrade server
	ZCL firmware upgrade cluster specification
	Differences from the ZCL specification
	OTA files
	OTA upgrade process
	OTA commands
	Schedule an upgrade
	Scheduled upgrades on sleeping devices
	Considerations for older firmware versions
	Does the download include the OTA header?

	OTA file system upgrades
	OTA file system update process
	OTA file system updates using XCTU
	Generate a public/private key pair
	Set the public key on the XBee 3 device
	Create the OTA file system image
	Perform the OTA file system update

	OTA file system updates: OEM
	Generate a public/private key pair
	Set the public key on the XBee 3 device
	Create the OTA file system image
	Perform the OTA file system update

